Cargando…

Evolution of the Properties and Composition of Heavy Oil by Injecting Dry Boiler Flue Gas

[Image: see text] As the increasing pressure to carbon peak and carbon neutral has brought carbon capture and storage (CCS) to the forefront as an emission mitigation tool, greater attention is being paid to the potential for injecting dry boiler flue gas (DBFG) into oil reservoirs. With the aim to...

Descripción completa

Detalles Bibliográficos
Autores principales: Dong, Wenjie, Ji, Yanmin, Wang, Jian, Li, Baogang, Yang, Farong, Yang, Jijin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8697374/
https://www.ncbi.nlm.nih.gov/pubmed/34963951
http://dx.doi.org/10.1021/acsomega.1c05101
Descripción
Sumario:[Image: see text] As the increasing pressure to carbon peak and carbon neutral has brought carbon capture and storage (CCS) to the forefront as an emission mitigation tool, greater attention is being paid to the potential for injecting dry boiler flue gas (DBFG) into oil reservoirs. With the aim to directly inject DBFG with steam into heavy oil reservoirs, this study presents the results of a laboratory investigation of the effect of DBFG on the properties and composition of heavy oil by viscosity measurement, pressure–volume–temperature measurement, high-temperature and high-pressure experiment, and high-resolution mass spectrometry analysis. The results of the experiments show that adding 0.5 wt % particulate matter has no obvious influence on the viscosity of heavy oil. DBFG dissolved in heavy oil can reduce viscosity, increase the flow capability, and make the heavy oil volume swell. Heavy oil is oxidized with DBFG at 140 °C, which is mainly caused by the O(2) in the DBFG, and the oxidation product is alcohol. The findings of the beneficial effect of DBFG on viscosity and swelling factor and the negligible negative effect of the small amount of nitrogen oxides, sulfides, and particulate matter in DBFG are very encouraging. It is expected that DBFG can be directly injected into heavy oil, not only for enhanced oil recovery (EOR) but also for reducing the emissions of greenhouse gases and pollutants, as well as for saving costs.