Cargando…
Kernel principal components based cascade forest towards disease identification with human microbiota
BACKGROUND: Numerous pieces of clinical evidence have shown that many phenotypic traits of human disease are related to their gut microbiome, i.e., inflammation, obesity, HIV, and diabetes. Through supervised classification, it is feasible to determine the human disease states by revealing the intes...
Autores principales: | Zhou, Jiayu, Ye, Yanqing, Jiang, Jiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8697468/ https://www.ncbi.nlm.nih.gov/pubmed/34949186 http://dx.doi.org/10.1186/s12911-021-01705-5 |
Ejemplares similares
-
Towards Multiple Kernel Principal Component Analysis for Integrative Analysis of Tumor Samples
por: Speicher, Nora K., et al.
Publicado: (2017) -
Gene Expression Data Classification With Kernel
Principal Component Analysis
por: Liu, Zhenqiu, et al.
Publicado: (2005) -
Kernel Principal Component Analysis of Coil Compression in Parallel Imaging
por: Chang, Yuchou, et al.
Publicado: (2018) -
Gene- or region-based association study via kernel principal component analysis
por: Gao, Qingsong, et al.
Publicado: (2011) -
Research on Recognition Method of Driving Fatigue State Based on Sample Entropy and Kernel Principal Component Analysis
por: Ye, Beige, et al.
Publicado: (2018)