Cargando…

Unexpected Susceptibility of Poly(ethylene furanoate) to UV Irradiation: A Warning Light for Furandicarboxylic Acid?

[Image: see text] Poly(ethylene furanoate) (PEF) is widely advocated as a renewable alternative to the fossil-based polyester poly(ethylene terephthalate) (PET). Whereas the UV stability of PET is well-studied, little is known for PEF. Here, we compare the UV stability of both polyesters after 500 h...

Descripción completa

Detalles Bibliográficos
Autores principales: Maaskant, Evelien, van Es, Daan S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8697558/
https://www.ncbi.nlm.nih.gov/pubmed/35549145
http://dx.doi.org/10.1021/acsmacrolett.1c00676
Descripción
Sumario:[Image: see text] Poly(ethylene furanoate) (PEF) is widely advocated as a renewable alternative to the fossil-based polyester poly(ethylene terephthalate) (PET). Whereas the UV stability of PET is well-studied, little is known for PEF. Here, we compare the UV stability of both polyesters after 500 h of UV irradiation in a Q-SUN xenon arc chamber. Both the virgin and irradiated polyesters were characterized by FTIR, SEC, DSC, NMR, TGA, and MALDI-TOF MS. PET showed only minor signs of degradation under the applied test conditions, while PEF showed significant discoloration as well as evidence of both cross linking/chain extension and chain scission. Also, the thermal properties and the ability to crystallize of PEF were severely impacted by UV irradiation. Although a detailed study on the degradation mechanism is out of the scope of this work, we found indications that Norrish type I and II degradation reactions play an important role in the UV degradation of PEF.