Cargando…
Exploring Spatially Explicit Changes in Carbon Budgets of Global River Basins during the 20th Century
[Image: see text] Rivers play an important role in the global carbon (C) cycle. However, it remains unknown how long-term river C fluxes change because of climate, land-use, and other environmental changes. Here, we investigated the spatiotemporal variations in global freshwater C cycling in the 20t...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8697559/ https://www.ncbi.nlm.nih.gov/pubmed/34855371 http://dx.doi.org/10.1021/acs.est.1c04605 |
_version_ | 1784620072681078784 |
---|---|
author | van Hoek, Wim J. Wang, Junjie Vilmin, Lauriane Beusen, Arthur H.W. Mogollón, José M. Müller, Gerrit Pika, Philip A. Liu, Xiaochen Langeveld, Joep J. Bouwman, Alexander F. Middelburg, Jack J. |
author_facet | van Hoek, Wim J. Wang, Junjie Vilmin, Lauriane Beusen, Arthur H.W. Mogollón, José M. Müller, Gerrit Pika, Philip A. Liu, Xiaochen Langeveld, Joep J. Bouwman, Alexander F. Middelburg, Jack J. |
author_sort | van Hoek, Wim J. |
collection | PubMed |
description | [Image: see text] Rivers play an important role in the global carbon (C) cycle. However, it remains unknown how long-term river C fluxes change because of climate, land-use, and other environmental changes. Here, we investigated the spatiotemporal variations in global freshwater C cycling in the 20th century using the mechanistic IMAGE-Dynamic Global Nutrient Model extended with the Dynamic In-Stream Chemistry Carbon module (DISC-CARBON) that couples river basin hydrology, environmental conditions, and C delivery with C flows from headwaters to mouths. The results show heterogeneous spatial distribution of dissolved inorganic carbon (DIC) concentrations in global inland waters with the lowest concentrations in the tropics and highest concentrations in the Arctic and semiarid and arid regions. Dissolved organic carbon (DOC) concentrations are less than 10 mg C/L in most global inland waters and are generally high in high-latitude basins. Increasing global C inputs, burial, and CO(2) emissions reported in the literature are confirmed by DISC-CARBON. Global river C export to oceans has been stable around 0.9 Pg yr(–1). The long-term changes and spatial patterns of concentrations and fluxes of different C forms in the global river network unfold the combined influence of the lithology, climate, and hydrology of river basins, terrestrial and biological C sources, in-stream C transformations, and human interferences such as damming. |
format | Online Article Text |
id | pubmed-8697559 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-86975592021-12-23 Exploring Spatially Explicit Changes in Carbon Budgets of Global River Basins during the 20th Century van Hoek, Wim J. Wang, Junjie Vilmin, Lauriane Beusen, Arthur H.W. Mogollón, José M. Müller, Gerrit Pika, Philip A. Liu, Xiaochen Langeveld, Joep J. Bouwman, Alexander F. Middelburg, Jack J. Environ Sci Technol [Image: see text] Rivers play an important role in the global carbon (C) cycle. However, it remains unknown how long-term river C fluxes change because of climate, land-use, and other environmental changes. Here, we investigated the spatiotemporal variations in global freshwater C cycling in the 20th century using the mechanistic IMAGE-Dynamic Global Nutrient Model extended with the Dynamic In-Stream Chemistry Carbon module (DISC-CARBON) that couples river basin hydrology, environmental conditions, and C delivery with C flows from headwaters to mouths. The results show heterogeneous spatial distribution of dissolved inorganic carbon (DIC) concentrations in global inland waters with the lowest concentrations in the tropics and highest concentrations in the Arctic and semiarid and arid regions. Dissolved organic carbon (DOC) concentrations are less than 10 mg C/L in most global inland waters and are generally high in high-latitude basins. Increasing global C inputs, burial, and CO(2) emissions reported in the literature are confirmed by DISC-CARBON. Global river C export to oceans has been stable around 0.9 Pg yr(–1). The long-term changes and spatial patterns of concentrations and fluxes of different C forms in the global river network unfold the combined influence of the lithology, climate, and hydrology of river basins, terrestrial and biological C sources, in-stream C transformations, and human interferences such as damming. American Chemical Society 2021-12-02 2021-12-21 /pmc/articles/PMC8697559/ /pubmed/34855371 http://dx.doi.org/10.1021/acs.est.1c04605 Text en © 2021 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | van Hoek, Wim J. Wang, Junjie Vilmin, Lauriane Beusen, Arthur H.W. Mogollón, José M. Müller, Gerrit Pika, Philip A. Liu, Xiaochen Langeveld, Joep J. Bouwman, Alexander F. Middelburg, Jack J. Exploring Spatially Explicit Changes in Carbon Budgets of Global River Basins during the 20th Century |
title | Exploring
Spatially Explicit Changes in Carbon Budgets
of Global River Basins during the 20th Century |
title_full | Exploring
Spatially Explicit Changes in Carbon Budgets
of Global River Basins during the 20th Century |
title_fullStr | Exploring
Spatially Explicit Changes in Carbon Budgets
of Global River Basins during the 20th Century |
title_full_unstemmed | Exploring
Spatially Explicit Changes in Carbon Budgets
of Global River Basins during the 20th Century |
title_short | Exploring
Spatially Explicit Changes in Carbon Budgets
of Global River Basins during the 20th Century |
title_sort | exploring
spatially explicit changes in carbon budgets
of global river basins during the 20th century |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8697559/ https://www.ncbi.nlm.nih.gov/pubmed/34855371 http://dx.doi.org/10.1021/acs.est.1c04605 |
work_keys_str_mv | AT vanhoekwimj exploringspatiallyexplicitchangesincarbonbudgetsofglobalriverbasinsduringthe20thcentury AT wangjunjie exploringspatiallyexplicitchangesincarbonbudgetsofglobalriverbasinsduringthe20thcentury AT vilminlauriane exploringspatiallyexplicitchangesincarbonbudgetsofglobalriverbasinsduringthe20thcentury AT beusenarthurhw exploringspatiallyexplicitchangesincarbonbudgetsofglobalriverbasinsduringthe20thcentury AT mogollonjosem exploringspatiallyexplicitchangesincarbonbudgetsofglobalriverbasinsduringthe20thcentury AT mullergerrit exploringspatiallyexplicitchangesincarbonbudgetsofglobalriverbasinsduringthe20thcentury AT pikaphilipa exploringspatiallyexplicitchangesincarbonbudgetsofglobalriverbasinsduringthe20thcentury AT liuxiaochen exploringspatiallyexplicitchangesincarbonbudgetsofglobalriverbasinsduringthe20thcentury AT langeveldjoepj exploringspatiallyexplicitchangesincarbonbudgetsofglobalriverbasinsduringthe20thcentury AT bouwmanalexanderf exploringspatiallyexplicitchangesincarbonbudgetsofglobalriverbasinsduringthe20thcentury AT middelburgjackj exploringspatiallyexplicitchangesincarbonbudgetsofglobalriverbasinsduringthe20thcentury |