Cargando…
Machine learning vs. field 3D-QSAR models for serotonin 2A receptor psychoactive substances identification
Serotonergic psychedelics, substances exerting their effects primarily through the serotonin 2A receptor (5HT2AR), continue to comprise a substantial portion of reported new psychoactive substances (NPS). In this paper five quantitative structure–activity relationship (QSAR) models for predicting th...
Autores principales: | Floresta, Giuseppe, Abbate, Vincenzo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8697832/ https://www.ncbi.nlm.nih.gov/pubmed/35424006 http://dx.doi.org/10.1039/d1ra01335a |
Ejemplares similares
-
FABP4 inhibitors 3D-QSAR model and isosteric replacement of BMS309403 datasets
por: Floresta, Giuseppe, et al.
Publicado: (2018) -
Discovery of High-Affinity Cannabinoid Receptors Ligands through a 3D-QSAR Ushered by Scaffold-Hopping Analysis †
por: Floresta, Giuseppe, et al.
Publicado: (2018) -
Peptide-based positron emission tomography probes: current strategies for synthesis and radiolabelling
por: Failla, Mariacristina, et al.
Publicado: (2023) -
Comprehensive Protocol for the Identification and Characterization of New Psychoactive Substances in the Service of Law Enforcement Agencies
por: Bulska, Ewa, et al.
Publicado: (2020) -
Molecular Networking: A Useful Tool for the Identification of New Psychoactive Substances in Seizures by LC–HRMS
por: Vincenti, Flaminia, et al.
Publicado: (2020)