Cargando…
Combined nanofiltration and advanced oxidation processes with bifunctional carbon nanomembranes
Wastewater reclamation is becoming a top global interest as population growth and rapid industrialization pose a major challenge that requires development of sustainable cost-effective technologies and strategies for wastewater treatment. Carbon nanomembranes (CNMs)—synthetic 2D carbon sheets—can be...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8697847/ https://www.ncbi.nlm.nih.gov/pubmed/35424019 http://dx.doi.org/10.1039/d1ra01098k |
_version_ | 1784620135937474560 |
---|---|
author | Shapira, Barak Penki, Tirupathi Rao Cohen, Izaak Elias, Yuval Dalpke, Raphael Beyer, André Gölzhäuser, Armin Avraham, Eran Aurbach, Doron |
author_facet | Shapira, Barak Penki, Tirupathi Rao Cohen, Izaak Elias, Yuval Dalpke, Raphael Beyer, André Gölzhäuser, Armin Avraham, Eran Aurbach, Doron |
author_sort | Shapira, Barak |
collection | PubMed |
description | Wastewater reclamation is becoming a top global interest as population growth and rapid industrialization pose a major challenge that requires development of sustainable cost-effective technologies and strategies for wastewater treatment. Carbon nanomembranes (CNMs)—synthetic 2D carbon sheets—can be tailored chemically with specific surface functions and/or physically with nanopores of well-defined size as a strategy for multifunctional membrane design. Here, we explore a bifunctional design for combined secondary wastewater effluent treatment with dual action of membrane separation and advanced oxidation processes (AOP), exploiting dissolved oxygen. The bifunctional membrane consists of a CNM layer on top of a commercial ultrafiltration membrane (Microlon™) and a spray-coated reduced graphene oxide (rGO) thin film as the bottom layer. The CNM/support/rGO membrane was characterized by helium ion and atomic force microscopy, FTIR, XPS with a four-point conductivity probe, cyclic voltammetry, galvanostatic measurements, and impedance spectroscopy. Combined treatment of water by nanofiltration and AOP was demonstrated, employing a unique three electrode-dead end filtration setup that enables concurrent application of potential and pressure on the integrated membrane. For the model organic compound methylene blue, oxidation (by the Fenton reaction) was evaluated using UV-vis (610 nm). The rejection rate and permeability provided by the CNM layer were evaluated by dissolving polyethylene glycol (400 and 1000 Da) in the feed solution and applying pressure up to 1.5 bar. This demonstration of combined membrane separation and AOP using an integrated membrane opens up a new strategy for wastewater treatment. |
format | Online Article Text |
id | pubmed-8697847 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-86978472022-04-13 Combined nanofiltration and advanced oxidation processes with bifunctional carbon nanomembranes Shapira, Barak Penki, Tirupathi Rao Cohen, Izaak Elias, Yuval Dalpke, Raphael Beyer, André Gölzhäuser, Armin Avraham, Eran Aurbach, Doron RSC Adv Chemistry Wastewater reclamation is becoming a top global interest as population growth and rapid industrialization pose a major challenge that requires development of sustainable cost-effective technologies and strategies for wastewater treatment. Carbon nanomembranes (CNMs)—synthetic 2D carbon sheets—can be tailored chemically with specific surface functions and/or physically with nanopores of well-defined size as a strategy for multifunctional membrane design. Here, we explore a bifunctional design for combined secondary wastewater effluent treatment with dual action of membrane separation and advanced oxidation processes (AOP), exploiting dissolved oxygen. The bifunctional membrane consists of a CNM layer on top of a commercial ultrafiltration membrane (Microlon™) and a spray-coated reduced graphene oxide (rGO) thin film as the bottom layer. The CNM/support/rGO membrane was characterized by helium ion and atomic force microscopy, FTIR, XPS with a four-point conductivity probe, cyclic voltammetry, galvanostatic measurements, and impedance spectroscopy. Combined treatment of water by nanofiltration and AOP was demonstrated, employing a unique three electrode-dead end filtration setup that enables concurrent application of potential and pressure on the integrated membrane. For the model organic compound methylene blue, oxidation (by the Fenton reaction) was evaluated using UV-vis (610 nm). The rejection rate and permeability provided by the CNM layer were evaluated by dissolving polyethylene glycol (400 and 1000 Da) in the feed solution and applying pressure up to 1.5 bar. This demonstration of combined membrane separation and AOP using an integrated membrane opens up a new strategy for wastewater treatment. The Royal Society of Chemistry 2021-04-23 /pmc/articles/PMC8697847/ /pubmed/35424019 http://dx.doi.org/10.1039/d1ra01098k Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Shapira, Barak Penki, Tirupathi Rao Cohen, Izaak Elias, Yuval Dalpke, Raphael Beyer, André Gölzhäuser, Armin Avraham, Eran Aurbach, Doron Combined nanofiltration and advanced oxidation processes with bifunctional carbon nanomembranes |
title | Combined nanofiltration and advanced oxidation processes with bifunctional carbon nanomembranes |
title_full | Combined nanofiltration and advanced oxidation processes with bifunctional carbon nanomembranes |
title_fullStr | Combined nanofiltration and advanced oxidation processes with bifunctional carbon nanomembranes |
title_full_unstemmed | Combined nanofiltration and advanced oxidation processes with bifunctional carbon nanomembranes |
title_short | Combined nanofiltration and advanced oxidation processes with bifunctional carbon nanomembranes |
title_sort | combined nanofiltration and advanced oxidation processes with bifunctional carbon nanomembranes |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8697847/ https://www.ncbi.nlm.nih.gov/pubmed/35424019 http://dx.doi.org/10.1039/d1ra01098k |
work_keys_str_mv | AT shapirabarak combinednanofiltrationandadvancedoxidationprocesseswithbifunctionalcarbonnanomembranes AT penkitirupathirao combinednanofiltrationandadvancedoxidationprocesseswithbifunctionalcarbonnanomembranes AT cohenizaak combinednanofiltrationandadvancedoxidationprocesseswithbifunctionalcarbonnanomembranes AT eliasyuval combinednanofiltrationandadvancedoxidationprocesseswithbifunctionalcarbonnanomembranes AT dalpkeraphael combinednanofiltrationandadvancedoxidationprocesseswithbifunctionalcarbonnanomembranes AT beyerandre combinednanofiltrationandadvancedoxidationprocesseswithbifunctionalcarbonnanomembranes AT golzhauserarmin combinednanofiltrationandadvancedoxidationprocesseswithbifunctionalcarbonnanomembranes AT avrahameran combinednanofiltrationandadvancedoxidationprocesseswithbifunctionalcarbonnanomembranes AT aurbachdoron combinednanofiltrationandadvancedoxidationprocesseswithbifunctionalcarbonnanomembranes |