Cargando…
Rumen Fermentation—Microbiota—Host Gene Expression Interactions to Reveal the Adaptability of Tibetan Sheep in Different Periods
SIMPLE SUMMARY: The Qinghai-Tibet Plateau has a unique ecological environment, involving high altitude, low oxygen levels, strong ultraviolet rays, and severe imbalances in seasonal forage supply, which poses a serious threat to the livestock that feeds on natural pastures to maintain their survival...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8697948/ https://www.ncbi.nlm.nih.gov/pubmed/34944301 http://dx.doi.org/10.3390/ani11123529 |
Sumario: | SIMPLE SUMMARY: The Qinghai-Tibet Plateau has a unique ecological environment, involving high altitude, low oxygen levels, strong ultraviolet rays, and severe imbalances in seasonal forage supply, which poses a serious threat to the livestock that feeds on natural pastures to maintain their survival. We have carried out a long-term follow-up study on rumen fermentation characteristics, the microbiota, and rumen epithelial gene expression of local Tibetan sheep. Correlation analysis showed that there were interactions among rumen fermentation characteristics, the microbiota, and host gene expression, mainly by adjusting the amino acid metabolism pathway and energy metabolism pathway to improve energy utilization. At the same time, we adjusted the balance of the rumen “core microbiota”, which was regulated to promote the development of rumen and maintain the homeostasis of rumen environment (which relies Tibetan sheep can better adapt to the harsh environment in different periods of the Qinghai-Tibet Plateau). This provides a theoretical basis for the breeding and management of Tibetan sheep on the Qinghai-Tibet Plateau. ABSTRACT: As an important ruminant on the Qinghai-Tibet Plateau, Tibetan sheep can maintain their population reproduction rate in the harsh high-altitude environment of low temperature and low oxygen, which relies on their special plateau adaptations mechanism that they have formed for a long time. Microbiomes (known as “second genomes”) are closely related to the nutrient absorption, adaptability, and health of the host. In this study, rumen fermentation characteristics, the microbiota, and rumen epithelial gene expression of Tibetan sheep in various months were analyzed. The results show that the rumen fermentation characteristics of Tibetan sheep differed in different months. The total SCFAs (short-chain fatty acids), acetate, propionate, and butyrate concentrations were highest in October and lowest in June. The CL (cellulase) activity was highest in February, while the ACX (acid xylanase) activity was highest in April. In addition, the diversity and abundance of rumen microbes differed in different months. Bacteroidetes (53.4%) and Firmicutes (27.4%) were the dominant phyla. Prevotella_1 and Rikenellaceae_RC9_gut_group were the dominant genera. The abundance of Prevotella_1 was highest in June (27.8%) and lowest in December (17.8%). In addition, the expression of CLAUDIN4 (Claudin-4) and ZO1 (Zonula occludens 1) was significantly higher in April than in August and December, while the expression of SGLT1 (Sodium glucose linked transporter 1) was highest in August. Correlation analysis showed that there were interactions among rumen fermentation characteristics, the microbiota, and host gene expression, mainly by adjusting the amino acid metabolism pathway and energy metabolism pathway to improve energy utilization. At the same time, we adjusted the balance of the rumen “core microbiota” to promote the development of rumen and maintain the homeostasis of rumen environment, which makes Tibetan sheep better able to adapt to the harsh environment in different periods of the Qinghai-Tibet Plateau. |
---|