Cargando…

Prediction and Experimental Verification of a Hierarchical Transcription Factor Regulatory Network of Porcine Myoglobin (Mb)

SIMPLE SUMMARY: Myoglobin (Mb) is the sarcoplasmic heme protein primarily responsible for meat’s color. The transcription pattern of the porcine Mb gene has not been studied because its genome structure information has not been officially annotated. In our study, we attempted to reveal the possible...

Descripción completa

Detalles Bibliográficos
Autores principales: Yuan, Di, Yu, Hao, Liu, Songcai, Hao, Linlin, Zhang, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8698129/
https://www.ncbi.nlm.nih.gov/pubmed/34944373
http://dx.doi.org/10.3390/ani11123599
Descripción
Sumario:SIMPLE SUMMARY: Myoglobin (Mb) is the sarcoplasmic heme protein primarily responsible for meat’s color. The transcription pattern of the porcine Mb gene has not been studied because its genome structure information has not been officially annotated. In our study, we attempted to reveal the possible mechanism of pig-meat color formation by integrating the public data of genome and transcriptome. ABSTRACT: Myoglobin is a key chemical component that determines meat’s color and affects consumers’ purchase intentions. In this work, we firstly identified the promoter sequence of the Mb gene from the primary assembly of high-throughput genome sequencing in pigs, and predicted its potential transcription factors by LASAGNA. Through the data mining of the mRNA expression profile of longissimus dorsi muscle of different pig breeds, we constructed a hierarchical interplay network of Mb-TFs (Myoglobin-Transcription Factors), consisting of 16 adaptive transcription factors and 23 secondary transcription factors. The verification of gene expression in longissimus dorsi muscle showed that the Mb mRNA and encoded protein were significantly (p < 0.05) more abundant in Bama pigs than Yorkshire pigs. The qRT-PCR (Real-Time Quantitative Reverse Transcription PCR) validation on genes of the Mb-TFs network showed that FOS, STAT3, STAT1, NEFL21, NFE2L2 and MAFB were significant positive regulatory core transcription factors of Mb-TFs network in Bama pigs, whereas ATF3 was the secondary transcription factor most responsible for the activation of the above transcription factors. Our study provides a new strategy to unravel the mechanism of pork color formation, based on public transcriptome and genome data analysis.