Cargando…
Diagnostic Impact of Radiological Findings and Extracellular Vesicles: Are We Close to Radiovesicolomics?
SIMPLE SUMMARY: Over the years, diagnostic tests such as in radiology and flow cytometry have become more and more powerful in the constant struggle against different pathologies, some of which are life-threatening. The possibility of using these “weapons” in a conjugated manner could result in high...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8698452/ https://www.ncbi.nlm.nih.gov/pubmed/34943180 http://dx.doi.org/10.3390/biology10121265 |
Sumario: | SIMPLE SUMMARY: Over the years, diagnostic tests such as in radiology and flow cytometry have become more and more powerful in the constant struggle against different pathologies, some of which are life-threatening. The possibility of using these “weapons” in a conjugated manner could result in higher healing and prevention rates, and a decrease in late diagnosis diseases. Different correlations among pathologies, extracellular vesicles (EVs), and radiological findings were recently demonstrated by many authors. Together with the increasing importance of “omics” sciences, and artificial intelligence in this new century, the perspective of a new research field called “radiovesicolomics” could be the missing link, enabling a different approach to disease diagnosis and treatment. ABSTRACT: Currently, several pathologies have corresponding and specific diagnostic and therapeutic branches of interest focused on early and correct detection, as well as the best therapeutic approach. Radiology never ceases to develop newer technologies in order to give patients a clear, safe, early, and precise diagnosis; furthermore, in the last few years diagnostic imaging panoramas have been extended to the field of artificial intelligence (AI) and machine learning. On the other hand, clinical and laboratory tests, like flow cytometry and the techniques found in the “omics” sciences, aim to detect microscopic elements, like extracellular vesicles, with the highest specificity and sensibility for disease detection. If these scientific branches started to cooperate, playing a conjugated role in pathology diagnosis, what could be the results? Our review seeks to give a quick overview of recent state of the art research which investigates correlations between extracellular vesicles and the known radiological features useful for diagnosis. |
---|