Cargando…
Targeting Inflammasome Activation in COVID-19: Delivery of RNA Interference-Based Therapeutic Molecules
Mortality and morbidity associated with COVID-19 continue to be significantly high worldwide, owing to the absence of effective treatment strategies. The emergence of different variants of SARS-CoV-2 is also a considerable source of concern and has led to challenges in the development of better prev...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8698532/ https://www.ncbi.nlm.nih.gov/pubmed/34944639 http://dx.doi.org/10.3390/biomedicines9121823 |
_version_ | 1784620300559712256 |
---|---|
author | Gedefaw, Lealem Ullah, Sami Lee, Thomas M. H. Yip, Shea Ping Huang, Chien-Ling |
author_facet | Gedefaw, Lealem Ullah, Sami Lee, Thomas M. H. Yip, Shea Ping Huang, Chien-Ling |
author_sort | Gedefaw, Lealem |
collection | PubMed |
description | Mortality and morbidity associated with COVID-19 continue to be significantly high worldwide, owing to the absence of effective treatment strategies. The emergence of different variants of SARS-CoV-2 is also a considerable source of concern and has led to challenges in the development of better prevention and treatment strategies, including vaccines. Immune dysregulation due to pro-inflammatory mediators has worsened the situation in COVID-19 patients. Inflammasomes play a critical role in modulating pro-inflammatory cytokines in the pathogenesis of COVID-19 and their activation is associated with poor clinical outcomes. Numerous preclinical and clinical trials for COVID-19 treatment using different approaches are currently underway. Targeting different inflammasomes to reduce the cytokine storm, and its associated complications, in COVID-19 patients is a new area of research. Non-coding RNAs, targeting inflammasome activation, may serve as an effective treatment strategy. However, the efficacy of these therapeutic agents is highly dependent on the delivery system. MicroRNAs and long non-coding RNAs, in conjunction with an efficient delivery vehicle, present a potential strategy for regulating NLRP3 activity through various RNA interference (RNAi) mechanisms. In this regard, the use of nanomaterials and other vehicle types for the delivery of RNAi-based therapeutic molecules for COVID-19 may serve as a novel approach for enhancing drug efficacy. The present review briefly summarizes immune dysregulation and its consequences, the roles of different non-coding RNAs in regulating the NLRP3 inflammasome, distinct types of vectors for their delivery, and potential therapeutic targets of microRNA for treatment of COVID-19. |
format | Online Article Text |
id | pubmed-8698532 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86985322021-12-24 Targeting Inflammasome Activation in COVID-19: Delivery of RNA Interference-Based Therapeutic Molecules Gedefaw, Lealem Ullah, Sami Lee, Thomas M. H. Yip, Shea Ping Huang, Chien-Ling Biomedicines Review Mortality and morbidity associated with COVID-19 continue to be significantly high worldwide, owing to the absence of effective treatment strategies. The emergence of different variants of SARS-CoV-2 is also a considerable source of concern and has led to challenges in the development of better prevention and treatment strategies, including vaccines. Immune dysregulation due to pro-inflammatory mediators has worsened the situation in COVID-19 patients. Inflammasomes play a critical role in modulating pro-inflammatory cytokines in the pathogenesis of COVID-19 and their activation is associated with poor clinical outcomes. Numerous preclinical and clinical trials for COVID-19 treatment using different approaches are currently underway. Targeting different inflammasomes to reduce the cytokine storm, and its associated complications, in COVID-19 patients is a new area of research. Non-coding RNAs, targeting inflammasome activation, may serve as an effective treatment strategy. However, the efficacy of these therapeutic agents is highly dependent on the delivery system. MicroRNAs and long non-coding RNAs, in conjunction with an efficient delivery vehicle, present a potential strategy for regulating NLRP3 activity through various RNA interference (RNAi) mechanisms. In this regard, the use of nanomaterials and other vehicle types for the delivery of RNAi-based therapeutic molecules for COVID-19 may serve as a novel approach for enhancing drug efficacy. The present review briefly summarizes immune dysregulation and its consequences, the roles of different non-coding RNAs in regulating the NLRP3 inflammasome, distinct types of vectors for their delivery, and potential therapeutic targets of microRNA for treatment of COVID-19. MDPI 2021-12-03 /pmc/articles/PMC8698532/ /pubmed/34944639 http://dx.doi.org/10.3390/biomedicines9121823 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Gedefaw, Lealem Ullah, Sami Lee, Thomas M. H. Yip, Shea Ping Huang, Chien-Ling Targeting Inflammasome Activation in COVID-19: Delivery of RNA Interference-Based Therapeutic Molecules |
title | Targeting Inflammasome Activation in COVID-19: Delivery of RNA Interference-Based Therapeutic Molecules |
title_full | Targeting Inflammasome Activation in COVID-19: Delivery of RNA Interference-Based Therapeutic Molecules |
title_fullStr | Targeting Inflammasome Activation in COVID-19: Delivery of RNA Interference-Based Therapeutic Molecules |
title_full_unstemmed | Targeting Inflammasome Activation in COVID-19: Delivery of RNA Interference-Based Therapeutic Molecules |
title_short | Targeting Inflammasome Activation in COVID-19: Delivery of RNA Interference-Based Therapeutic Molecules |
title_sort | targeting inflammasome activation in covid-19: delivery of rna interference-based therapeutic molecules |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8698532/ https://www.ncbi.nlm.nih.gov/pubmed/34944639 http://dx.doi.org/10.3390/biomedicines9121823 |
work_keys_str_mv | AT gedefawlealem targetinginflammasomeactivationincovid19deliveryofrnainterferencebasedtherapeuticmolecules AT ullahsami targetinginflammasomeactivationincovid19deliveryofrnainterferencebasedtherapeuticmolecules AT leethomasmh targetinginflammasomeactivationincovid19deliveryofrnainterferencebasedtherapeuticmolecules AT yipsheaping targetinginflammasomeactivationincovid19deliveryofrnainterferencebasedtherapeuticmolecules AT huangchienling targetinginflammasomeactivationincovid19deliveryofrnainterferencebasedtherapeuticmolecules |