Cargando…
Antimalarial Drug Predictions Using Molecular Descriptors and Machine Learning against Plasmodium Falciparum
Malaria remains by far one of the most threatening and dangerous illnesses caused by the plasmodium falciparum parasite. Chloroquine (CQ) and first-line artemisinin-based combination treatment (ACT) have long been the drug of choice for the treatment and controlling of malaria; however, the emergenc...
Autores principales: | Mswahili, Medard Edmund, Martin, Gati Lother, Woo, Jiyoung, Choi, Guang J., Jeong, Young-Seob |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8698534/ https://www.ncbi.nlm.nih.gov/pubmed/34944394 http://dx.doi.org/10.3390/biom11121750 |
Ejemplares similares
-
Novel Cocrystals of Vonoprazan: Machine Learning-Assisted Discovery
por: Lee, Min-Jeong, et al.
Publicado: (2022) -
File-level malware detection using byte streams
por: Jeong, Young-Seob, et al.
Publicado: (2023) -
Comparison of the susceptibility of Plasmodium knowlesi and Plasmodium falciparum to antimalarial agents
por: van Schalkwyk, Donelly A, et al.
Publicado: (2017) -
Sensitivity of Plasmodium falciparum to Antimalarial Drugs in Hainan Island, China
por: Wang, Shan-Qing, et al.
Publicado: (2015) -
Antimalarial activity of Malaria Box Compounds against Plasmodium falciparum clinical isolates
por: Chirawurah, Jersley D., et al.
Publicado: (2017)