Cargando…

Generation of a Novel High-Affinity Antibody Binding to PCSK9 Catalytic Domain with Slow Dissociation Rate by CDR-Grafting, Alanine Scanning and Saturated Site-Directed Mutagenesis for Favorably Treating Hypercholesterolemia

Inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) has become an attractive therapeutic strategy for lowering low-density lipoprotein cholesterol (LDL-C). In this study, a novel high affinity humanized IgG1 mAb (named h5E12-L230G) targeting the catalytic domain of human PCSK9 (hPCSK...

Descripción completa

Detalles Bibliográficos
Autores principales: Bai, Zhengli, Xu, Menglong, Mei, Ying, Hu, Tuo, Zhang, Panpan, Chen, Manman, Lv, Wenxiu, Lu, Chenchen, Tan, Shuhua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8698692/
https://www.ncbi.nlm.nih.gov/pubmed/34944600
http://dx.doi.org/10.3390/biomedicines9121783
Descripción
Sumario:Inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) has become an attractive therapeutic strategy for lowering low-density lipoprotein cholesterol (LDL-C). In this study, a novel high affinity humanized IgG1 mAb (named h5E12-L230G) targeting the catalytic domain of human PCSK9 (hPCSK9) was generated by using CDR-grafting, alanine-scanning mutagenesis, and saturated site-directed mutagenesis. The heavy-chain constant region of h5E12-L230G was modified to eliminate the cytotoxic effector functions and mitigate the heterogeneity. The biolayer interferometry (BLI) binding assay and molecular docking study revealed that h5E12-L230G binds to the catalytic domain of hPCSK9 with nanomolar affinity (K(D) = 1.72 nM) and an extremely slow dissociation rate (k(off), 4.84 × 10(−5) s(−1)), which interprets its quite low binding energy (−54.97 kcal/mol) with hPCSK9. Additionally, h5E12-L230G elevated the levels of LDLR and enhanced the LDL-C uptake in HepG2 cells, as well as reducing the serum LDL-C and total cholesterol (TC) levels in hyperlipidemic mouse model with high potency comparable to the positive control alirocumab. Our data indicate that h5E12-L230G is a high-affinity anti-PCSK9 antibody candidate with an extremely slow dissociation rate for favorably treating hypercholesterolemia and relevant cardiovascular diseases.