Cargando…
EmbedDTI: Enhancing the Molecular Representations via Sequence Embedding and Graph Convolutional Network for the Prediction of Drug-Target Interaction
The identification of drug-target interaction (DTI) plays a key role in drug discovery and development. Benefitting from large-scale drug databases and verified DTI relationships, a lot of machine-learning methods have been developed to predict DTIs. However, due to the difficulty in extracting usef...
Autores principales: | Jin, Yuan, Lu, Jiarui, Shi, Runhan, Yang, Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8698792/ https://www.ncbi.nlm.nih.gov/pubmed/34944427 http://dx.doi.org/10.3390/biom11121783 |
Ejemplares similares
-
EmbedFormer: Embedded Depth-Wise Convolution Layer for Token Mixing
por: Wang, Zeji, et al.
Publicado: (2022) -
DTiGEMS+: drug–target interaction prediction using graph embedding, graph mining, and similarity-based techniques
por: Thafar, Maha A., et al.
Publicado: (2020) -
DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on protein sequences
por: Lee, Ingoo, et al.
Publicado: (2019) -
FRnet-DTI: Deep convolutional neural network for drug-target interaction prediction
por: Rayhan, Farshid, et al.
Publicado: (2020) -
To Embed or Not: Network Embedding as a Paradigm in Computational Biology
por: Nelson, Walter, et al.
Publicado: (2019)