Cargando…

BXD Recombinant Inbred Mice as a Model to Study Neurotoxicity

BXD recombinant inbred (RI) lines represent a genetic reference population derived from a cross between C57BL/6J mice (B6) and DBA/2J mice (D2), which through meiotic recombination events possesses recombinant chromosomes containing B6 or D2 haplotype segments. The quantitative trait loci (QTLs) are...

Descripción completa

Detalles Bibliográficos
Autores principales: Martins, Airton C., López-Granero, Caridad, Ferrer, Beatriz, Tinkov, Alexey A., Skalny, Anatoly V., Paoliello, Monica M. B., Aschner, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8698863/
https://www.ncbi.nlm.nih.gov/pubmed/34944406
http://dx.doi.org/10.3390/biom11121762
Descripción
Sumario:BXD recombinant inbred (RI) lines represent a genetic reference population derived from a cross between C57BL/6J mice (B6) and DBA/2J mice (D2), which through meiotic recombination events possesses recombinant chromosomes containing B6 or D2 haplotype segments. The quantitative trait loci (QTLs) are the locations of segregating genetic polymorphisms and are fundamental to understanding genetic diversity in human disease susceptibility and severity. QTL mapping represents the typical approach for identifying naturally occurring polymorphisms that influence complex phenotypes. In this process, genotypic values at markers of known genomic locations are associated with phenotypic values measured in a segregating population. Indeed, BXD RI strains provide a powerful tool to study neurotoxicity induced by different substances. In this review, we describe the use of BXD RI lines to understand the underlying mechanisms of neurotoxicity in response to ethanol and cocaine, as well as metals and pesticide exposures.