Cargando…
Does an Invasive Bivalve Outperform Its Native Congener in a Heat Wave Scenario? A Laboratory Study Case with Ruditapes decussatus and R. philippinarum
SIMPLE SUMMARY: Global climate change is responsible for more frequent heat waves, which offers opportunities for invasive species to expand their range. Two congener bivalves, the native Ruditapes decussatus and the invasive R. philippinarum, were exposed to a heat wave aquaria simulation and analy...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8698865/ https://www.ncbi.nlm.nih.gov/pubmed/34943199 http://dx.doi.org/10.3390/biology10121284 |
_version_ | 1784620380141387776 |
---|---|
author | Crespo, Daniel Leston, Sara Rato, Lénia D. Martinho, Filipe Novais, Sara C. Pardal, Miguel A. Lemos, Marco F. L. |
author_facet | Crespo, Daniel Leston, Sara Rato, Lénia D. Martinho, Filipe Novais, Sara C. Pardal, Miguel A. Lemos, Marco F. L. |
author_sort | Crespo, Daniel |
collection | PubMed |
description | SIMPLE SUMMARY: Global climate change is responsible for more frequent heat waves, which offers opportunities for invasive species to expand their range. Two congener bivalves, the native Ruditapes decussatus and the invasive R. philippinarum, were exposed to a heat wave aquaria simulation and analysed for ecological and subcellular biomarkers responses. Despite reduced responses on the ecological level (bioturbation and nutrient concentration), there were differential responses to the heat wave at the subcellular level, where the invasive species seems to be less impacted than the native by the heat wave. This reinforces the common notion that climate change events may provide opportunities for biological invasions. ABSTRACT: Global warming and the subsequent increase in the frequency of temperature anomalies are expected to affect marine and estuarine species’ population dynamics, latitudinal distribution, and fitness, allowing non-native opportunistic species to invade and thrive in new geographical areas. Bivalves represent a significant percentage of the benthic biomass in marine ecosystems worldwide, often with commercial interest, while mediating fundamental ecological processes. To understand how these temperature anomalies contribute to the success (or not) of biological invasions, two closely related species, the native Ruditapes decussatus and the introduced R. philippinarum, were exposed to a simulated heat wave. Organisms of both species were exposed to mean summer temperature (~18 °C) for 6 days, followed by 6 days of simulated heat wave conditions (~22 °C). Both species were analysed for key ecological processes such as bioturbation and nutrient generation—which are significant proxies for benthic function and habitat quality—and subcellular biomarkers—oxidative stress and damage, and energetic metabolism. Results showed subcellular responses to heat waves. However, such responses were not expressed at the addressed ecological levels. The subcellular responses to the heat wave in the invasive R. philippinarum pinpoint less damage and higher cellular energy allocation to cope with thermal stress, which may further improve its fitness and thus invasiveness behaviour. |
format | Online Article Text |
id | pubmed-8698865 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86988652021-12-24 Does an Invasive Bivalve Outperform Its Native Congener in a Heat Wave Scenario? A Laboratory Study Case with Ruditapes decussatus and R. philippinarum Crespo, Daniel Leston, Sara Rato, Lénia D. Martinho, Filipe Novais, Sara C. Pardal, Miguel A. Lemos, Marco F. L. Biology (Basel) Article SIMPLE SUMMARY: Global climate change is responsible for more frequent heat waves, which offers opportunities for invasive species to expand their range. Two congener bivalves, the native Ruditapes decussatus and the invasive R. philippinarum, were exposed to a heat wave aquaria simulation and analysed for ecological and subcellular biomarkers responses. Despite reduced responses on the ecological level (bioturbation and nutrient concentration), there were differential responses to the heat wave at the subcellular level, where the invasive species seems to be less impacted than the native by the heat wave. This reinforces the common notion that climate change events may provide opportunities for biological invasions. ABSTRACT: Global warming and the subsequent increase in the frequency of temperature anomalies are expected to affect marine and estuarine species’ population dynamics, latitudinal distribution, and fitness, allowing non-native opportunistic species to invade and thrive in new geographical areas. Bivalves represent a significant percentage of the benthic biomass in marine ecosystems worldwide, often with commercial interest, while mediating fundamental ecological processes. To understand how these temperature anomalies contribute to the success (or not) of biological invasions, two closely related species, the native Ruditapes decussatus and the introduced R. philippinarum, were exposed to a simulated heat wave. Organisms of both species were exposed to mean summer temperature (~18 °C) for 6 days, followed by 6 days of simulated heat wave conditions (~22 °C). Both species were analysed for key ecological processes such as bioturbation and nutrient generation—which are significant proxies for benthic function and habitat quality—and subcellular biomarkers—oxidative stress and damage, and energetic metabolism. Results showed subcellular responses to heat waves. However, such responses were not expressed at the addressed ecological levels. The subcellular responses to the heat wave in the invasive R. philippinarum pinpoint less damage and higher cellular energy allocation to cope with thermal stress, which may further improve its fitness and thus invasiveness behaviour. MDPI 2021-12-07 /pmc/articles/PMC8698865/ /pubmed/34943199 http://dx.doi.org/10.3390/biology10121284 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Crespo, Daniel Leston, Sara Rato, Lénia D. Martinho, Filipe Novais, Sara C. Pardal, Miguel A. Lemos, Marco F. L. Does an Invasive Bivalve Outperform Its Native Congener in a Heat Wave Scenario? A Laboratory Study Case with Ruditapes decussatus and R. philippinarum |
title | Does an Invasive Bivalve Outperform Its Native Congener in a Heat Wave Scenario? A Laboratory Study Case with Ruditapes decussatus and R. philippinarum |
title_full | Does an Invasive Bivalve Outperform Its Native Congener in a Heat Wave Scenario? A Laboratory Study Case with Ruditapes decussatus and R. philippinarum |
title_fullStr | Does an Invasive Bivalve Outperform Its Native Congener in a Heat Wave Scenario? A Laboratory Study Case with Ruditapes decussatus and R. philippinarum |
title_full_unstemmed | Does an Invasive Bivalve Outperform Its Native Congener in a Heat Wave Scenario? A Laboratory Study Case with Ruditapes decussatus and R. philippinarum |
title_short | Does an Invasive Bivalve Outperform Its Native Congener in a Heat Wave Scenario? A Laboratory Study Case with Ruditapes decussatus and R. philippinarum |
title_sort | does an invasive bivalve outperform its native congener in a heat wave scenario? a laboratory study case with ruditapes decussatus and r. philippinarum |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8698865/ https://www.ncbi.nlm.nih.gov/pubmed/34943199 http://dx.doi.org/10.3390/biology10121284 |
work_keys_str_mv | AT crespodaniel doesaninvasivebivalveoutperformitsnativecongenerinaheatwavescenarioalaboratorystudycasewithruditapesdecussatusandrphilippinarum AT lestonsara doesaninvasivebivalveoutperformitsnativecongenerinaheatwavescenarioalaboratorystudycasewithruditapesdecussatusandrphilippinarum AT ratoleniad doesaninvasivebivalveoutperformitsnativecongenerinaheatwavescenarioalaboratorystudycasewithruditapesdecussatusandrphilippinarum AT martinhofilipe doesaninvasivebivalveoutperformitsnativecongenerinaheatwavescenarioalaboratorystudycasewithruditapesdecussatusandrphilippinarum AT novaissarac doesaninvasivebivalveoutperformitsnativecongenerinaheatwavescenarioalaboratorystudycasewithruditapesdecussatusandrphilippinarum AT pardalmiguela doesaninvasivebivalveoutperformitsnativecongenerinaheatwavescenarioalaboratorystudycasewithruditapesdecussatusandrphilippinarum AT lemosmarcofl doesaninvasivebivalveoutperformitsnativecongenerinaheatwavescenarioalaboratorystudycasewithruditapesdecussatusandrphilippinarum |