Cargando…
BreastNet18: A High Accuracy Fine-Tuned VGG16 Model Evaluated Using Ablation Study for Diagnosing Breast Cancer from Enhanced Mammography Images
SIMPLE SUMMARY: Breast cancer diagnosis at an early stage using mammography is important, as it assists clinical specialists in treatment planning to increase survival rates. The aim of this study is to construct an effective method to classify breast images into four classes with a low error rate....
Autores principales: | Montaha, Sidratul, Azam, Sami, Rafid, Abul Kalam Muhammad Rakibul Haque, Ghosh, Pronab, Hasan, Md. Zahid, Jonkman, Mirjam, De Boer, Friso |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8698892/ https://www.ncbi.nlm.nih.gov/pubmed/34943262 http://dx.doi.org/10.3390/biology10121347 |
Ejemplares similares
-
A shallow deep learning approach to classify skin cancer using down-scaling method to minimize time and space complexity
por: Montaha, Sidratul, et al.
Publicado: (2022) -
Automated Detection of Broncho-Arterial Pairs Using CT Scans Employing Different Approaches to Classify Lung Diseases
por: Azam, Sami, et al.
Publicado: (2023) -
An Automated Broncho-Arterial (BA) Pair Segmentation Process and Assessment of BA Ratios in Children with Bronchiectasis Using Lung HRCT Scans: A Pilot Study
por: Azam, Sami, et al.
Publicado: (2023) -
An Effective Ensemble Machine Learning Approach to Classify Breast Cancer Based on Feature Selection and Lesion Segmentation Using Preprocessed Mammograms
por: Rafid, A. K. M. Rakibul Haque, et al.
Publicado: (2022) -
Automated breast tumor ultrasound image segmentation with hybrid UNet and classification using fine-tuned CNN model
por: Hossain, Shahed, et al.
Publicado: (2023)