Cargando…

Comparison of Culturing and Metabarcoding Methods to Describe the Fungal Endophytic Assemblage of Brachypodium rupestre Growing in a Range of Anthropized Disturbance Regimes

SIMPLE SUMMARY: The richness (number of species) of the fungi kingdom is estimated at 1.5 million species, but the vast majority remains unknown. Many of them inhabit plants—the so-called fungal endophytes—and may establish different types of interactions with their host plant. Fungal endophytes hav...

Descripción completa

Detalles Bibliográficos
Autores principales: Durán, María, San Emeterio, Leticia, Canals, Rosa Maria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8698972/
https://www.ncbi.nlm.nih.gov/pubmed/34943161
http://dx.doi.org/10.3390/biology10121246
_version_ 1784620406593814528
author Durán, María
San Emeterio, Leticia
Canals, Rosa Maria
author_facet Durán, María
San Emeterio, Leticia
Canals, Rosa Maria
author_sort Durán, María
collection PubMed
description SIMPLE SUMMARY: The richness (number of species) of the fungi kingdom is estimated at 1.5 million species, but the vast majority remains unknown. Many of them inhabit plants—the so-called fungal endophytes—and may establish different types of interactions with their host plant. Fungal endophytes have been traditionally studied by letting them grow in appropriate culturing media in petri dishes, but novel massive DNA sequencing techniques which do not require a cultivation step (metabarcoding) are gaining ground. Both techniques were applied and compared to characterize the mycobiome of plants of a tall grass (Brachypodium rupestre) growing in high-mountain grasslands with different plant diversity (low and high). The two methods showed similar trends comparing endophyte richness between plant tissue types (root > rhizome > shoot) and between grasslands (low-diversity > high-diversity). However, the metabarcoding identified almost six times more endophyte species than the culturing although the most isolated fungal species via culturing, Omnidemptus graminis, was not recognized via metabarcoding. We conclude that the complementation of both techniques is still the best option to obtain a complete characterization of the fungal endophytic assemblage of the plant species. ABSTRACT: Fungal endophytes develop inside plants without visible external signs, and they may confer adaptive advantages to their hosts. Culturing methods have been traditionally used to recognize the fungal endophytic assemblage, but novel metabarcoding techniques are being increasingly applied. This study aims to characterize the fungal endophytic assemblage in shoots, rhizomes and roots of the tall grass Brachypodium rupestre growing in a large area of natural grasslands with a continuum of anthropized disturbance regimes. Seven out of 88 taxa identified via metabarcoding accounted for 81.2% of the reads (Helotiaceae, Lachnum sp. A, Albotricha sp. A, Helotiales A, Agaricales A, Mycena sp. and Mollisiaceae C), revealing a small group of abundant endophytes and a large group of rare species. Although both methods detected the same trends in richness and fungal diversity among the tissues (root > rhizome > shoot) and grasslands (low-diversity > high-diversity grasslands), the metabarcoding tool identified 5.8 times more taxa than the traditional culturing method (15 taxa) but, surprisingly, failed to sequence the most isolated endophyte on plates, Omnidemptus graminis. Since both methods are still subject to important constraints, both are required to obtain a complete characterization of the fungal endophytic assemblage of the plant species.
format Online
Article
Text
id pubmed-8698972
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-86989722021-12-24 Comparison of Culturing and Metabarcoding Methods to Describe the Fungal Endophytic Assemblage of Brachypodium rupestre Growing in a Range of Anthropized Disturbance Regimes Durán, María San Emeterio, Leticia Canals, Rosa Maria Biology (Basel) Article SIMPLE SUMMARY: The richness (number of species) of the fungi kingdom is estimated at 1.5 million species, but the vast majority remains unknown. Many of them inhabit plants—the so-called fungal endophytes—and may establish different types of interactions with their host plant. Fungal endophytes have been traditionally studied by letting them grow in appropriate culturing media in petri dishes, but novel massive DNA sequencing techniques which do not require a cultivation step (metabarcoding) are gaining ground. Both techniques were applied and compared to characterize the mycobiome of plants of a tall grass (Brachypodium rupestre) growing in high-mountain grasslands with different plant diversity (low and high). The two methods showed similar trends comparing endophyte richness between plant tissue types (root > rhizome > shoot) and between grasslands (low-diversity > high-diversity). However, the metabarcoding identified almost six times more endophyte species than the culturing although the most isolated fungal species via culturing, Omnidemptus graminis, was not recognized via metabarcoding. We conclude that the complementation of both techniques is still the best option to obtain a complete characterization of the fungal endophytic assemblage of the plant species. ABSTRACT: Fungal endophytes develop inside plants without visible external signs, and they may confer adaptive advantages to their hosts. Culturing methods have been traditionally used to recognize the fungal endophytic assemblage, but novel metabarcoding techniques are being increasingly applied. This study aims to characterize the fungal endophytic assemblage in shoots, rhizomes and roots of the tall grass Brachypodium rupestre growing in a large area of natural grasslands with a continuum of anthropized disturbance regimes. Seven out of 88 taxa identified via metabarcoding accounted for 81.2% of the reads (Helotiaceae, Lachnum sp. A, Albotricha sp. A, Helotiales A, Agaricales A, Mycena sp. and Mollisiaceae C), revealing a small group of abundant endophytes and a large group of rare species. Although both methods detected the same trends in richness and fungal diversity among the tissues (root > rhizome > shoot) and grasslands (low-diversity > high-diversity grasslands), the metabarcoding tool identified 5.8 times more taxa than the traditional culturing method (15 taxa) but, surprisingly, failed to sequence the most isolated endophyte on plates, Omnidemptus graminis. Since both methods are still subject to important constraints, both are required to obtain a complete characterization of the fungal endophytic assemblage of the plant species. MDPI 2021-11-29 /pmc/articles/PMC8698972/ /pubmed/34943161 http://dx.doi.org/10.3390/biology10121246 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Durán, María
San Emeterio, Leticia
Canals, Rosa Maria
Comparison of Culturing and Metabarcoding Methods to Describe the Fungal Endophytic Assemblage of Brachypodium rupestre Growing in a Range of Anthropized Disturbance Regimes
title Comparison of Culturing and Metabarcoding Methods to Describe the Fungal Endophytic Assemblage of Brachypodium rupestre Growing in a Range of Anthropized Disturbance Regimes
title_full Comparison of Culturing and Metabarcoding Methods to Describe the Fungal Endophytic Assemblage of Brachypodium rupestre Growing in a Range of Anthropized Disturbance Regimes
title_fullStr Comparison of Culturing and Metabarcoding Methods to Describe the Fungal Endophytic Assemblage of Brachypodium rupestre Growing in a Range of Anthropized Disturbance Regimes
title_full_unstemmed Comparison of Culturing and Metabarcoding Methods to Describe the Fungal Endophytic Assemblage of Brachypodium rupestre Growing in a Range of Anthropized Disturbance Regimes
title_short Comparison of Culturing and Metabarcoding Methods to Describe the Fungal Endophytic Assemblage of Brachypodium rupestre Growing in a Range of Anthropized Disturbance Regimes
title_sort comparison of culturing and metabarcoding methods to describe the fungal endophytic assemblage of brachypodium rupestre growing in a range of anthropized disturbance regimes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8698972/
https://www.ncbi.nlm.nih.gov/pubmed/34943161
http://dx.doi.org/10.3390/biology10121246
work_keys_str_mv AT duranmaria comparisonofculturingandmetabarcodingmethodstodescribethefungalendophyticassemblageofbrachypodiumrupestregrowinginarangeofanthropizeddisturbanceregimes
AT sanemeterioleticia comparisonofculturingandmetabarcodingmethodstodescribethefungalendophyticassemblageofbrachypodiumrupestregrowinginarangeofanthropizeddisturbanceregimes
AT canalsrosamaria comparisonofculturingandmetabarcodingmethodstodescribethefungalendophyticassemblageofbrachypodiumrupestregrowinginarangeofanthropizeddisturbanceregimes