Cargando…
β-Hydroxy-β-Methylbutyrate Supplementation Promotes Antitumor Immunity in an Obesity Responsive Mouse Model of Pancreatic Ductal Adenocarcinoma
SIMPLE SUMMARY: Pancreatic cancer (PDAC) is a deadly disease, exacerbated by obesity, which lacks effective therapeutic interventions. Most PDAC has a limited response to immune- and chemotherapy. Treating PDAC is made additionally challenging by the rapid emergence of muscle wasting and cachexia, w...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8699071/ https://www.ncbi.nlm.nih.gov/pubmed/34944981 http://dx.doi.org/10.3390/cancers13246359 |
_version_ | 1784620429521977344 |
---|---|
author | Coleman, Michael F. Liu, Kristyn A. Pfeil, Alexander J. Etigunta, Suhas K. Tang, Xiaohu Fabela, Salvador Lashinger, Laura M. Cui, Zhengrong Hursting, Stephen D. |
author_facet | Coleman, Michael F. Liu, Kristyn A. Pfeil, Alexander J. Etigunta, Suhas K. Tang, Xiaohu Fabela, Salvador Lashinger, Laura M. Cui, Zhengrong Hursting, Stephen D. |
author_sort | Coleman, Michael F. |
collection | PubMed |
description | SIMPLE SUMMARY: Pancreatic cancer (PDAC) is a deadly disease, exacerbated by obesity, which lacks effective therapeutic interventions. Most PDAC has a limited response to immune- and chemotherapy. Treating PDAC is made additionally challenging by the rapid emergence of muscle wasting and cachexia, which predict poor response to several therapies. We have found that dietary supplementation with β-hydroxy-β-methylbutyrate promotes immunosurveillance in PDAC tumors and protects muscle. This dietary supplement has the potential to be an important adjuvant in PDAC therapy, opening the doors to immunotherapy response. ABSTRACT: Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related deaths in the United States, and effective therapies for PDAC are currently lacking. Moreover, PDAC is promoted and exacerbated by obesity, while cachexia and sarcopenia are exceptionally common comorbidities that predict both poor survival and treatment response. Managing PDAC with immunotherapies has thus far proven ineffective, partly due to the metabolically hostile tumor microenvironment. β-hydroxy-β-methylbutyrate (HMB), a metabolite of leucine commonly used as a dietary supplement to boost muscle growth and immune function, may be an attractive candidate to augment PDAC therapy. We therefore sought to test the hypothesis that HMB would enhance antitumor immunity while protecting mouse muscle mass. Control and diet-induced obese C57BL/6 male mice bearing subcutaneously injected Panc02 tumors were supplemented with 1% HMB and treated with or without 50 mg/kg gemcitabine (n = 15/group). HMB was associated with reduced muscle inflammation and increased muscle fiber size. HMB also reduced tumor growth and promoted antitumor immunity in obese, but not lean, mice, independent of the gemcitabine treatment. Separately, in lean tumor-bearing mice, HMB supplementation promoted an anti-PD1 immunotherapy response (n = 15/group). Digital cytometry implicated the decreased abundance of M2-like macrophages in PDAC tumors, an effect that was enhanced by anti-PD1 immunotherapy. We confirmed that HMB augments M1-like macrophage (antitumor) polarization. These preclinical findings suggest that HMB has muscle-sparing and antitumor activities against PDAC in the context of obesity, and that it may sensitize otherwise nonresponsive PDAC to immunotherapy. |
format | Online Article Text |
id | pubmed-8699071 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86990712021-12-24 β-Hydroxy-β-Methylbutyrate Supplementation Promotes Antitumor Immunity in an Obesity Responsive Mouse Model of Pancreatic Ductal Adenocarcinoma Coleman, Michael F. Liu, Kristyn A. Pfeil, Alexander J. Etigunta, Suhas K. Tang, Xiaohu Fabela, Salvador Lashinger, Laura M. Cui, Zhengrong Hursting, Stephen D. Cancers (Basel) Article SIMPLE SUMMARY: Pancreatic cancer (PDAC) is a deadly disease, exacerbated by obesity, which lacks effective therapeutic interventions. Most PDAC has a limited response to immune- and chemotherapy. Treating PDAC is made additionally challenging by the rapid emergence of muscle wasting and cachexia, which predict poor response to several therapies. We have found that dietary supplementation with β-hydroxy-β-methylbutyrate promotes immunosurveillance in PDAC tumors and protects muscle. This dietary supplement has the potential to be an important adjuvant in PDAC therapy, opening the doors to immunotherapy response. ABSTRACT: Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related deaths in the United States, and effective therapies for PDAC are currently lacking. Moreover, PDAC is promoted and exacerbated by obesity, while cachexia and sarcopenia are exceptionally common comorbidities that predict both poor survival and treatment response. Managing PDAC with immunotherapies has thus far proven ineffective, partly due to the metabolically hostile tumor microenvironment. β-hydroxy-β-methylbutyrate (HMB), a metabolite of leucine commonly used as a dietary supplement to boost muscle growth and immune function, may be an attractive candidate to augment PDAC therapy. We therefore sought to test the hypothesis that HMB would enhance antitumor immunity while protecting mouse muscle mass. Control and diet-induced obese C57BL/6 male mice bearing subcutaneously injected Panc02 tumors were supplemented with 1% HMB and treated with or without 50 mg/kg gemcitabine (n = 15/group). HMB was associated with reduced muscle inflammation and increased muscle fiber size. HMB also reduced tumor growth and promoted antitumor immunity in obese, but not lean, mice, independent of the gemcitabine treatment. Separately, in lean tumor-bearing mice, HMB supplementation promoted an anti-PD1 immunotherapy response (n = 15/group). Digital cytometry implicated the decreased abundance of M2-like macrophages in PDAC tumors, an effect that was enhanced by anti-PD1 immunotherapy. We confirmed that HMB augments M1-like macrophage (antitumor) polarization. These preclinical findings suggest that HMB has muscle-sparing and antitumor activities against PDAC in the context of obesity, and that it may sensitize otherwise nonresponsive PDAC to immunotherapy. MDPI 2021-12-18 /pmc/articles/PMC8699071/ /pubmed/34944981 http://dx.doi.org/10.3390/cancers13246359 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Coleman, Michael F. Liu, Kristyn A. Pfeil, Alexander J. Etigunta, Suhas K. Tang, Xiaohu Fabela, Salvador Lashinger, Laura M. Cui, Zhengrong Hursting, Stephen D. β-Hydroxy-β-Methylbutyrate Supplementation Promotes Antitumor Immunity in an Obesity Responsive Mouse Model of Pancreatic Ductal Adenocarcinoma |
title | β-Hydroxy-β-Methylbutyrate Supplementation Promotes Antitumor Immunity in an Obesity Responsive Mouse Model of Pancreatic Ductal Adenocarcinoma |
title_full | β-Hydroxy-β-Methylbutyrate Supplementation Promotes Antitumor Immunity in an Obesity Responsive Mouse Model of Pancreatic Ductal Adenocarcinoma |
title_fullStr | β-Hydroxy-β-Methylbutyrate Supplementation Promotes Antitumor Immunity in an Obesity Responsive Mouse Model of Pancreatic Ductal Adenocarcinoma |
title_full_unstemmed | β-Hydroxy-β-Methylbutyrate Supplementation Promotes Antitumor Immunity in an Obesity Responsive Mouse Model of Pancreatic Ductal Adenocarcinoma |
title_short | β-Hydroxy-β-Methylbutyrate Supplementation Promotes Antitumor Immunity in an Obesity Responsive Mouse Model of Pancreatic Ductal Adenocarcinoma |
title_sort | β-hydroxy-β-methylbutyrate supplementation promotes antitumor immunity in an obesity responsive mouse model of pancreatic ductal adenocarcinoma |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8699071/ https://www.ncbi.nlm.nih.gov/pubmed/34944981 http://dx.doi.org/10.3390/cancers13246359 |
work_keys_str_mv | AT colemanmichaelf bhydroxybmethylbutyratesupplementationpromotesantitumorimmunityinanobesityresponsivemousemodelofpancreaticductaladenocarcinoma AT liukristyna bhydroxybmethylbutyratesupplementationpromotesantitumorimmunityinanobesityresponsivemousemodelofpancreaticductaladenocarcinoma AT pfeilalexanderj bhydroxybmethylbutyratesupplementationpromotesantitumorimmunityinanobesityresponsivemousemodelofpancreaticductaladenocarcinoma AT etiguntasuhask bhydroxybmethylbutyratesupplementationpromotesantitumorimmunityinanobesityresponsivemousemodelofpancreaticductaladenocarcinoma AT tangxiaohu bhydroxybmethylbutyratesupplementationpromotesantitumorimmunityinanobesityresponsivemousemodelofpancreaticductaladenocarcinoma AT fabelasalvador bhydroxybmethylbutyratesupplementationpromotesantitumorimmunityinanobesityresponsivemousemodelofpancreaticductaladenocarcinoma AT lashingerlauram bhydroxybmethylbutyratesupplementationpromotesantitumorimmunityinanobesityresponsivemousemodelofpancreaticductaladenocarcinoma AT cuizhengrong bhydroxybmethylbutyratesupplementationpromotesantitumorimmunityinanobesityresponsivemousemodelofpancreaticductaladenocarcinoma AT hurstingstephend bhydroxybmethylbutyratesupplementationpromotesantitumorimmunityinanobesityresponsivemousemodelofpancreaticductaladenocarcinoma |