Cargando…
xDEEP-MSI: Explainable Bias-Rejecting Microsatellite Instability Deep Learning System in Colorectal Cancer
The prediction of microsatellite instability (MSI) using deep learning (DL) techniques could have significant benefits, including reducing cost and increasing MSI testing of colorectal cancer (CRC) patients. Nonetheless, batch effects or systematic biases are not well characterized in digital histol...
Autores principales: | Bustos, Aurelia, Payá, Artemio, Torrubia, Andrés, Jover, Rodrigo, Llor, Xavier, Bessa, Xavier, Castells, Antoni, Carracedo, Ángel, Alenda, Cristina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8699085/ https://www.ncbi.nlm.nih.gov/pubmed/34944430 http://dx.doi.org/10.3390/biom11121786 |
Ejemplares similares
-
An adaptive hybrid XdeepFM based deep Interest network model for click-through rate prediction system
por: Lu, Qiao, et al.
Publicado: (2021) -
Colorectal cancer molecular classification using BRAF, KRAS, microsatellite instability and CIMP status: Prognostic implications and response to chemotherapy
por: Murcia, Oscar, et al.
Publicado: (2018) -
Evidence for classification of c.1852_1853AA>GC in MLH1 as a neutral variant for Lynch syndrome
por: Castillejo, Adela, et al.
Publicado: (2011) -
Single Nucleotide Polymorphisms in the Wnt and BMP Pathways and Colorectal Cancer Risk in a Spanish Cohort
por: Fernández-Rozadilla, Ceres, et al.
Publicado: (2010) -
Multiple Sporadic Colorectal Cancers Display a Unique Methylation Phenotype
por: Gonzalo, Victoria, et al.
Publicado: (2014)