Cargando…
A Deep Convolutional Neural Network for Prediction of Peptide Collision Cross Sections in Ion Mobility Spectrometry
Most frequently, the identification of peptides in mass spectrometry-based proteomics is carried out using high-resolution tandem mass spectrometry. In order to increase the accuracy of analysis, additional information on the peptides such as chromatographic retention time and collision cross sectio...
Autores principales: | Samukhina, Yulia V., Matyushin, Dmitriy D., Grinevich, Oksana I., Buryak, Aleksey K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8699202/ https://www.ncbi.nlm.nih.gov/pubmed/34944547 http://dx.doi.org/10.3390/biom11121904 |
Ejemplares similares
-
Intelligent Workflow and Software for Non-Target Analysis of Complex Samples Using a Mixture of Toxic Transformation Products of Unsymmetrical Dimethylhydrazine as an Example
por: Sholokhova, Anastasia Yu., et al.
Publicado: (2023) -
Deep Learning Based Prediction of Gas Chromatographic Retention Indices for a Wide Variety of Polar and Mid-Polar Liquid Stationary Phases
por: Matyushin, Dmitriy D., et al.
Publicado: (2021) -
Effect of Phosphorylation on the Collision Cross Sections of Peptide Ions in Ion Mobility Spectrometry
por: Ogata, Kosuke, et al.
Publicado: (2021) -
Artificial neural networks for the prediction of peptide drift time in ion mobility mass spectrometry
por: Wang, Bing, et al.
Publicado: (2010) -
Analysis of Primary Liquid Chromatography Mass Spectrometry Data by Neural Networks for Plant Samples Classification
por: Turova, Polina, et al.
Publicado: (2022)