Cargando…
RFLMDA: A Novel Reinforcement Learning-Based Computational Model for Human MicroRNA-Disease Association Prediction
Numerous studies have confirmed that microRNAs play a crucial role in the research of complex human diseases. Identifying the relationship between miRNAs and diseases is important for improving the treatment of complex diseases. However, traditional biological experiments are not without restriction...
Autores principales: | Cui, Linqian, Lu, You, Sun, Jiacheng, Fu, Qiming, Xu, Xiao, Wu, Hongjie, Chen, Jianping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8699433/ https://www.ncbi.nlm.nih.gov/pubmed/34944479 http://dx.doi.org/10.3390/biom11121835 |
Ejemplares similares
-
A Method of Optimizing Weight Allocation in Data Integration Based on Q-Learning for Drug-Target Interaction Prediction
por: Sun, Jiacheng, et al.
Publicado: (2022) -
Research on predicting 2D-HP protein folding using reinforcement learning with full state space
por: Wu, Hongjie, et al.
Publicado: (2019) -
MicroRNA as a novel player in atrial fibrillation
por: Fu, Siyi, et al.
Publicado: (2014) -
MicroRNA-34a: A Novel Therapeutic Target in Fibrosis
por: Zhao, Min, et al.
Publicado: (2022) -
MicroRNA: Biological and Computational Perspective
por: Kong, Yong, et al.
Publicado: (2005)