Cargando…
A Functional Precision Medicine Pipeline Combines Comparative Transcriptomics and Tumor Organoid Modeling to Identify Bespoke Treatment Strategies for Glioblastoma
Li Fraumeni syndrome (LFS) is a hereditary cancer predisposition syndrome caused by germline mutations in TP53. TP53 is the most common mutated gene in human cancer, occurring in 30–50% of glioblastomas (GBM). Here, we highlight a precision medicine platform to identify potential targets for a GBM p...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8699481/ https://www.ncbi.nlm.nih.gov/pubmed/34943910 http://dx.doi.org/10.3390/cells10123400 |
_version_ | 1784620523613847552 |
---|---|
author | Reed, Megan R. Lyle, A. Geoffrey De Loose, Annick Maddukuri, Leena Learned, Katrina Beale, Holly C. Kephart, Ellen T. Cheney, Allison van den Bout, Anouk Lee, Madison P. Hundley, Kelsey N. Smith, Ashley M. DesRochers, Teresa M. Vibat, Cecile Rose T. Gokden, Murat Salama, Sofie Wardell, Christopher P. Eoff, Robert L. Vaske, Olena M. Rodriguez, Analiz |
author_facet | Reed, Megan R. Lyle, A. Geoffrey De Loose, Annick Maddukuri, Leena Learned, Katrina Beale, Holly C. Kephart, Ellen T. Cheney, Allison van den Bout, Anouk Lee, Madison P. Hundley, Kelsey N. Smith, Ashley M. DesRochers, Teresa M. Vibat, Cecile Rose T. Gokden, Murat Salama, Sofie Wardell, Christopher P. Eoff, Robert L. Vaske, Olena M. Rodriguez, Analiz |
author_sort | Reed, Megan R. |
collection | PubMed |
description | Li Fraumeni syndrome (LFS) is a hereditary cancer predisposition syndrome caused by germline mutations in TP53. TP53 is the most common mutated gene in human cancer, occurring in 30–50% of glioblastomas (GBM). Here, we highlight a precision medicine platform to identify potential targets for a GBM patient with LFS. We used a comparative transcriptomics approach to identify genes that are uniquely overexpressed in the LFS GBM patient relative to a cancer compendium of 12,747 tumor RNA sequencing data sets, including 200 GBMs. STAT1 and STAT2 were identified as being significantly overexpressed in the LFS patient, indicating ruxolitinib, a Janus kinase 1 and 2 inhibitors, as a potential therapy. The LFS patient had the highest level of STAT1 and STAT2 expression in an institutional high-grade glioma cohort of 45 patients, further supporting the cancer compendium results. To empirically validate the comparative transcriptomics pipeline, we used a combination of adherent and organoid cell culture techniques, including ex vivo patient-derived organoids (PDOs) from four patient-derived cell lines, including the LFS patient. STAT1 and STAT2 expression levels in the four patient-derived cells correlated with levels identified in the respective parent tumors. In both adherent and organoid cultures, cells from the LFS patient were among the most sensitive to ruxolitinib compared to patient-derived cells with lower STAT1 and STAT2 expression levels. A spheroid-based drug screening assay (3D-PREDICT) was performed and used to identify further therapeutic targets. Two targeted therapies were selected for the patient of interest and resulted in radiographic disease stability. This manuscript supports the use of comparative transcriptomics to identify personalized therapeutic targets in a functional precision medicine platform for malignant brain tumors. |
format | Online Article Text |
id | pubmed-8699481 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86994812021-12-24 A Functional Precision Medicine Pipeline Combines Comparative Transcriptomics and Tumor Organoid Modeling to Identify Bespoke Treatment Strategies for Glioblastoma Reed, Megan R. Lyle, A. Geoffrey De Loose, Annick Maddukuri, Leena Learned, Katrina Beale, Holly C. Kephart, Ellen T. Cheney, Allison van den Bout, Anouk Lee, Madison P. Hundley, Kelsey N. Smith, Ashley M. DesRochers, Teresa M. Vibat, Cecile Rose T. Gokden, Murat Salama, Sofie Wardell, Christopher P. Eoff, Robert L. Vaske, Olena M. Rodriguez, Analiz Cells Article Li Fraumeni syndrome (LFS) is a hereditary cancer predisposition syndrome caused by germline mutations in TP53. TP53 is the most common mutated gene in human cancer, occurring in 30–50% of glioblastomas (GBM). Here, we highlight a precision medicine platform to identify potential targets for a GBM patient with LFS. We used a comparative transcriptomics approach to identify genes that are uniquely overexpressed in the LFS GBM patient relative to a cancer compendium of 12,747 tumor RNA sequencing data sets, including 200 GBMs. STAT1 and STAT2 were identified as being significantly overexpressed in the LFS patient, indicating ruxolitinib, a Janus kinase 1 and 2 inhibitors, as a potential therapy. The LFS patient had the highest level of STAT1 and STAT2 expression in an institutional high-grade glioma cohort of 45 patients, further supporting the cancer compendium results. To empirically validate the comparative transcriptomics pipeline, we used a combination of adherent and organoid cell culture techniques, including ex vivo patient-derived organoids (PDOs) from four patient-derived cell lines, including the LFS patient. STAT1 and STAT2 expression levels in the four patient-derived cells correlated with levels identified in the respective parent tumors. In both adherent and organoid cultures, cells from the LFS patient were among the most sensitive to ruxolitinib compared to patient-derived cells with lower STAT1 and STAT2 expression levels. A spheroid-based drug screening assay (3D-PREDICT) was performed and used to identify further therapeutic targets. Two targeted therapies were selected for the patient of interest and resulted in radiographic disease stability. This manuscript supports the use of comparative transcriptomics to identify personalized therapeutic targets in a functional precision medicine platform for malignant brain tumors. MDPI 2021-12-02 /pmc/articles/PMC8699481/ /pubmed/34943910 http://dx.doi.org/10.3390/cells10123400 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Reed, Megan R. Lyle, A. Geoffrey De Loose, Annick Maddukuri, Leena Learned, Katrina Beale, Holly C. Kephart, Ellen T. Cheney, Allison van den Bout, Anouk Lee, Madison P. Hundley, Kelsey N. Smith, Ashley M. DesRochers, Teresa M. Vibat, Cecile Rose T. Gokden, Murat Salama, Sofie Wardell, Christopher P. Eoff, Robert L. Vaske, Olena M. Rodriguez, Analiz A Functional Precision Medicine Pipeline Combines Comparative Transcriptomics and Tumor Organoid Modeling to Identify Bespoke Treatment Strategies for Glioblastoma |
title | A Functional Precision Medicine Pipeline Combines Comparative Transcriptomics and Tumor Organoid Modeling to Identify Bespoke Treatment Strategies for Glioblastoma |
title_full | A Functional Precision Medicine Pipeline Combines Comparative Transcriptomics and Tumor Organoid Modeling to Identify Bespoke Treatment Strategies for Glioblastoma |
title_fullStr | A Functional Precision Medicine Pipeline Combines Comparative Transcriptomics and Tumor Organoid Modeling to Identify Bespoke Treatment Strategies for Glioblastoma |
title_full_unstemmed | A Functional Precision Medicine Pipeline Combines Comparative Transcriptomics and Tumor Organoid Modeling to Identify Bespoke Treatment Strategies for Glioblastoma |
title_short | A Functional Precision Medicine Pipeline Combines Comparative Transcriptomics and Tumor Organoid Modeling to Identify Bespoke Treatment Strategies for Glioblastoma |
title_sort | functional precision medicine pipeline combines comparative transcriptomics and tumor organoid modeling to identify bespoke treatment strategies for glioblastoma |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8699481/ https://www.ncbi.nlm.nih.gov/pubmed/34943910 http://dx.doi.org/10.3390/cells10123400 |
work_keys_str_mv | AT reedmeganr afunctionalprecisionmedicinepipelinecombinescomparativetranscriptomicsandtumororganoidmodelingtoidentifybespoketreatmentstrategiesforglioblastoma AT lyleageoffrey afunctionalprecisionmedicinepipelinecombinescomparativetranscriptomicsandtumororganoidmodelingtoidentifybespoketreatmentstrategiesforglioblastoma AT delooseannick afunctionalprecisionmedicinepipelinecombinescomparativetranscriptomicsandtumororganoidmodelingtoidentifybespoketreatmentstrategiesforglioblastoma AT maddukurileena afunctionalprecisionmedicinepipelinecombinescomparativetranscriptomicsandtumororganoidmodelingtoidentifybespoketreatmentstrategiesforglioblastoma AT learnedkatrina afunctionalprecisionmedicinepipelinecombinescomparativetranscriptomicsandtumororganoidmodelingtoidentifybespoketreatmentstrategiesforglioblastoma AT bealehollyc afunctionalprecisionmedicinepipelinecombinescomparativetranscriptomicsandtumororganoidmodelingtoidentifybespoketreatmentstrategiesforglioblastoma AT kephartellent afunctionalprecisionmedicinepipelinecombinescomparativetranscriptomicsandtumororganoidmodelingtoidentifybespoketreatmentstrategiesforglioblastoma AT cheneyallison afunctionalprecisionmedicinepipelinecombinescomparativetranscriptomicsandtumororganoidmodelingtoidentifybespoketreatmentstrategiesforglioblastoma AT vandenboutanouk afunctionalprecisionmedicinepipelinecombinescomparativetranscriptomicsandtumororganoidmodelingtoidentifybespoketreatmentstrategiesforglioblastoma AT leemadisonp afunctionalprecisionmedicinepipelinecombinescomparativetranscriptomicsandtumororganoidmodelingtoidentifybespoketreatmentstrategiesforglioblastoma AT hundleykelseyn afunctionalprecisionmedicinepipelinecombinescomparativetranscriptomicsandtumororganoidmodelingtoidentifybespoketreatmentstrategiesforglioblastoma AT smithashleym afunctionalprecisionmedicinepipelinecombinescomparativetranscriptomicsandtumororganoidmodelingtoidentifybespoketreatmentstrategiesforglioblastoma AT desrochersteresam afunctionalprecisionmedicinepipelinecombinescomparativetranscriptomicsandtumororganoidmodelingtoidentifybespoketreatmentstrategiesforglioblastoma AT vibatcecileroset afunctionalprecisionmedicinepipelinecombinescomparativetranscriptomicsandtumororganoidmodelingtoidentifybespoketreatmentstrategiesforglioblastoma AT gokdenmurat afunctionalprecisionmedicinepipelinecombinescomparativetranscriptomicsandtumororganoidmodelingtoidentifybespoketreatmentstrategiesforglioblastoma AT salamasofie afunctionalprecisionmedicinepipelinecombinescomparativetranscriptomicsandtumororganoidmodelingtoidentifybespoketreatmentstrategiesforglioblastoma AT wardellchristopherp afunctionalprecisionmedicinepipelinecombinescomparativetranscriptomicsandtumororganoidmodelingtoidentifybespoketreatmentstrategiesforglioblastoma AT eoffrobertl afunctionalprecisionmedicinepipelinecombinescomparativetranscriptomicsandtumororganoidmodelingtoidentifybespoketreatmentstrategiesforglioblastoma AT vaskeolenam afunctionalprecisionmedicinepipelinecombinescomparativetranscriptomicsandtumororganoidmodelingtoidentifybespoketreatmentstrategiesforglioblastoma AT rodriguezanaliz afunctionalprecisionmedicinepipelinecombinescomparativetranscriptomicsandtumororganoidmodelingtoidentifybespoketreatmentstrategiesforglioblastoma AT reedmeganr functionalprecisionmedicinepipelinecombinescomparativetranscriptomicsandtumororganoidmodelingtoidentifybespoketreatmentstrategiesforglioblastoma AT lyleageoffrey functionalprecisionmedicinepipelinecombinescomparativetranscriptomicsandtumororganoidmodelingtoidentifybespoketreatmentstrategiesforglioblastoma AT delooseannick functionalprecisionmedicinepipelinecombinescomparativetranscriptomicsandtumororganoidmodelingtoidentifybespoketreatmentstrategiesforglioblastoma AT maddukurileena functionalprecisionmedicinepipelinecombinescomparativetranscriptomicsandtumororganoidmodelingtoidentifybespoketreatmentstrategiesforglioblastoma AT learnedkatrina functionalprecisionmedicinepipelinecombinescomparativetranscriptomicsandtumororganoidmodelingtoidentifybespoketreatmentstrategiesforglioblastoma AT bealehollyc functionalprecisionmedicinepipelinecombinescomparativetranscriptomicsandtumororganoidmodelingtoidentifybespoketreatmentstrategiesforglioblastoma AT kephartellent functionalprecisionmedicinepipelinecombinescomparativetranscriptomicsandtumororganoidmodelingtoidentifybespoketreatmentstrategiesforglioblastoma AT cheneyallison functionalprecisionmedicinepipelinecombinescomparativetranscriptomicsandtumororganoidmodelingtoidentifybespoketreatmentstrategiesforglioblastoma AT vandenboutanouk functionalprecisionmedicinepipelinecombinescomparativetranscriptomicsandtumororganoidmodelingtoidentifybespoketreatmentstrategiesforglioblastoma AT leemadisonp functionalprecisionmedicinepipelinecombinescomparativetranscriptomicsandtumororganoidmodelingtoidentifybespoketreatmentstrategiesforglioblastoma AT hundleykelseyn functionalprecisionmedicinepipelinecombinescomparativetranscriptomicsandtumororganoidmodelingtoidentifybespoketreatmentstrategiesforglioblastoma AT smithashleym functionalprecisionmedicinepipelinecombinescomparativetranscriptomicsandtumororganoidmodelingtoidentifybespoketreatmentstrategiesforglioblastoma AT desrochersteresam functionalprecisionmedicinepipelinecombinescomparativetranscriptomicsandtumororganoidmodelingtoidentifybespoketreatmentstrategiesforglioblastoma AT vibatcecileroset functionalprecisionmedicinepipelinecombinescomparativetranscriptomicsandtumororganoidmodelingtoidentifybespoketreatmentstrategiesforglioblastoma AT gokdenmurat functionalprecisionmedicinepipelinecombinescomparativetranscriptomicsandtumororganoidmodelingtoidentifybespoketreatmentstrategiesforglioblastoma AT salamasofie functionalprecisionmedicinepipelinecombinescomparativetranscriptomicsandtumororganoidmodelingtoidentifybespoketreatmentstrategiesforglioblastoma AT wardellchristopherp functionalprecisionmedicinepipelinecombinescomparativetranscriptomicsandtumororganoidmodelingtoidentifybespoketreatmentstrategiesforglioblastoma AT eoffrobertl functionalprecisionmedicinepipelinecombinescomparativetranscriptomicsandtumororganoidmodelingtoidentifybespoketreatmentstrategiesforglioblastoma AT vaskeolenam functionalprecisionmedicinepipelinecombinescomparativetranscriptomicsandtumororganoidmodelingtoidentifybespoketreatmentstrategiesforglioblastoma AT rodriguezanaliz functionalprecisionmedicinepipelinecombinescomparativetranscriptomicsandtumororganoidmodelingtoidentifybespoketreatmentstrategiesforglioblastoma |