Cargando…

Gut Metabolite Trimethylamine N-Oxide Protects INS-1 β-Cell and Rat Islet Function under Diabetic Glucolipotoxic Conditions

Serum accumulation of the gut microbial metabolite trimethylamine N-oxide (TMAO) is associated with high caloric intake and type 2 diabetes (T2D). Impaired pancreatic β-cell function is a hallmark of diet-induced T2D, which is linked to hyperglycemia and hyperlipidemia. While TMAO production via the...

Descripción completa

Detalles Bibliográficos
Autores principales: Krueger, Emily S., Beales, Joseph L., Russon, Kacie B., Elison, Weston S., Davis, Jordan R., Hansen, Jackson M., Neilson, Andrew P., Hansen, Jason M., Tessem, Jeffery S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8699500/
https://www.ncbi.nlm.nih.gov/pubmed/34944536
http://dx.doi.org/10.3390/biom11121892
_version_ 1784620528224436224
author Krueger, Emily S.
Beales, Joseph L.
Russon, Kacie B.
Elison, Weston S.
Davis, Jordan R.
Hansen, Jackson M.
Neilson, Andrew P.
Hansen, Jason M.
Tessem, Jeffery S.
author_facet Krueger, Emily S.
Beales, Joseph L.
Russon, Kacie B.
Elison, Weston S.
Davis, Jordan R.
Hansen, Jackson M.
Neilson, Andrew P.
Hansen, Jason M.
Tessem, Jeffery S.
author_sort Krueger, Emily S.
collection PubMed
description Serum accumulation of the gut microbial metabolite trimethylamine N-oxide (TMAO) is associated with high caloric intake and type 2 diabetes (T2D). Impaired pancreatic β-cell function is a hallmark of diet-induced T2D, which is linked to hyperglycemia and hyperlipidemia. While TMAO production via the gut microbiome-liver axis is well defined, its molecular effects on metabolic tissues are unclear, since studies in various tissues show deleterious and beneficial TMAO effects. We investigated the molecular effects of TMAO on functional β-cell mass. We hypothesized that TMAO may damage functional β-cell mass by inhibiting β-cell viability, survival, proliferation, or function to promote T2D pathogenesis. We treated INS-1 832/13 β-cells and primary rat islets with physiological TMAO concentrations and compared functional β-cell mass under healthy standard cell culture (SCC) and T2D-like glucolipotoxic (GLT) conditions. GLT significantly impeded β-cell mass and function by inducing oxidative and endoplasmic reticulum (ER) stress. TMAO normalized GLT-mediated damage in β-cells and primary islet function. Acute 40µM TMAO recovered insulin production, insulin granule formation, and insulin secretion by upregulating the IRE1α unfolded protein response to GLT-induced ER and oxidative stress. These novel results demonstrate that TMAO protects β-cell function and suggest that TMAO may play a beneficial molecular role in diet-induced T2D conditions.
format Online
Article
Text
id pubmed-8699500
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-86995002021-12-24 Gut Metabolite Trimethylamine N-Oxide Protects INS-1 β-Cell and Rat Islet Function under Diabetic Glucolipotoxic Conditions Krueger, Emily S. Beales, Joseph L. Russon, Kacie B. Elison, Weston S. Davis, Jordan R. Hansen, Jackson M. Neilson, Andrew P. Hansen, Jason M. Tessem, Jeffery S. Biomolecules Article Serum accumulation of the gut microbial metabolite trimethylamine N-oxide (TMAO) is associated with high caloric intake and type 2 diabetes (T2D). Impaired pancreatic β-cell function is a hallmark of diet-induced T2D, which is linked to hyperglycemia and hyperlipidemia. While TMAO production via the gut microbiome-liver axis is well defined, its molecular effects on metabolic tissues are unclear, since studies in various tissues show deleterious and beneficial TMAO effects. We investigated the molecular effects of TMAO on functional β-cell mass. We hypothesized that TMAO may damage functional β-cell mass by inhibiting β-cell viability, survival, proliferation, or function to promote T2D pathogenesis. We treated INS-1 832/13 β-cells and primary rat islets with physiological TMAO concentrations and compared functional β-cell mass under healthy standard cell culture (SCC) and T2D-like glucolipotoxic (GLT) conditions. GLT significantly impeded β-cell mass and function by inducing oxidative and endoplasmic reticulum (ER) stress. TMAO normalized GLT-mediated damage in β-cells and primary islet function. Acute 40µM TMAO recovered insulin production, insulin granule formation, and insulin secretion by upregulating the IRE1α unfolded protein response to GLT-induced ER and oxidative stress. These novel results demonstrate that TMAO protects β-cell function and suggest that TMAO may play a beneficial molecular role in diet-induced T2D conditions. MDPI 2021-12-17 /pmc/articles/PMC8699500/ /pubmed/34944536 http://dx.doi.org/10.3390/biom11121892 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Krueger, Emily S.
Beales, Joseph L.
Russon, Kacie B.
Elison, Weston S.
Davis, Jordan R.
Hansen, Jackson M.
Neilson, Andrew P.
Hansen, Jason M.
Tessem, Jeffery S.
Gut Metabolite Trimethylamine N-Oxide Protects INS-1 β-Cell and Rat Islet Function under Diabetic Glucolipotoxic Conditions
title Gut Metabolite Trimethylamine N-Oxide Protects INS-1 β-Cell and Rat Islet Function under Diabetic Glucolipotoxic Conditions
title_full Gut Metabolite Trimethylamine N-Oxide Protects INS-1 β-Cell and Rat Islet Function under Diabetic Glucolipotoxic Conditions
title_fullStr Gut Metabolite Trimethylamine N-Oxide Protects INS-1 β-Cell and Rat Islet Function under Diabetic Glucolipotoxic Conditions
title_full_unstemmed Gut Metabolite Trimethylamine N-Oxide Protects INS-1 β-Cell and Rat Islet Function under Diabetic Glucolipotoxic Conditions
title_short Gut Metabolite Trimethylamine N-Oxide Protects INS-1 β-Cell and Rat Islet Function under Diabetic Glucolipotoxic Conditions
title_sort gut metabolite trimethylamine n-oxide protects ins-1 β-cell and rat islet function under diabetic glucolipotoxic conditions
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8699500/
https://www.ncbi.nlm.nih.gov/pubmed/34944536
http://dx.doi.org/10.3390/biom11121892
work_keys_str_mv AT kruegeremilys gutmetabolitetrimethylaminenoxideprotectsins1bcellandratisletfunctionunderdiabeticglucolipotoxicconditions
AT bealesjosephl gutmetabolitetrimethylaminenoxideprotectsins1bcellandratisletfunctionunderdiabeticglucolipotoxicconditions
AT russonkacieb gutmetabolitetrimethylaminenoxideprotectsins1bcellandratisletfunctionunderdiabeticglucolipotoxicconditions
AT elisonwestons gutmetabolitetrimethylaminenoxideprotectsins1bcellandratisletfunctionunderdiabeticglucolipotoxicconditions
AT davisjordanr gutmetabolitetrimethylaminenoxideprotectsins1bcellandratisletfunctionunderdiabeticglucolipotoxicconditions
AT hansenjacksonm gutmetabolitetrimethylaminenoxideprotectsins1bcellandratisletfunctionunderdiabeticglucolipotoxicconditions
AT neilsonandrewp gutmetabolitetrimethylaminenoxideprotectsins1bcellandratisletfunctionunderdiabeticglucolipotoxicconditions
AT hansenjasonm gutmetabolitetrimethylaminenoxideprotectsins1bcellandratisletfunctionunderdiabeticglucolipotoxicconditions
AT tessemjefferys gutmetabolitetrimethylaminenoxideprotectsins1bcellandratisletfunctionunderdiabeticglucolipotoxicconditions