Cargando…
Gut Metabolite Trimethylamine N-Oxide Protects INS-1 β-Cell and Rat Islet Function under Diabetic Glucolipotoxic Conditions
Serum accumulation of the gut microbial metabolite trimethylamine N-oxide (TMAO) is associated with high caloric intake and type 2 diabetes (T2D). Impaired pancreatic β-cell function is a hallmark of diet-induced T2D, which is linked to hyperglycemia and hyperlipidemia. While TMAO production via the...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8699500/ https://www.ncbi.nlm.nih.gov/pubmed/34944536 http://dx.doi.org/10.3390/biom11121892 |
_version_ | 1784620528224436224 |
---|---|
author | Krueger, Emily S. Beales, Joseph L. Russon, Kacie B. Elison, Weston S. Davis, Jordan R. Hansen, Jackson M. Neilson, Andrew P. Hansen, Jason M. Tessem, Jeffery S. |
author_facet | Krueger, Emily S. Beales, Joseph L. Russon, Kacie B. Elison, Weston S. Davis, Jordan R. Hansen, Jackson M. Neilson, Andrew P. Hansen, Jason M. Tessem, Jeffery S. |
author_sort | Krueger, Emily S. |
collection | PubMed |
description | Serum accumulation of the gut microbial metabolite trimethylamine N-oxide (TMAO) is associated with high caloric intake and type 2 diabetes (T2D). Impaired pancreatic β-cell function is a hallmark of diet-induced T2D, which is linked to hyperglycemia and hyperlipidemia. While TMAO production via the gut microbiome-liver axis is well defined, its molecular effects on metabolic tissues are unclear, since studies in various tissues show deleterious and beneficial TMAO effects. We investigated the molecular effects of TMAO on functional β-cell mass. We hypothesized that TMAO may damage functional β-cell mass by inhibiting β-cell viability, survival, proliferation, or function to promote T2D pathogenesis. We treated INS-1 832/13 β-cells and primary rat islets with physiological TMAO concentrations and compared functional β-cell mass under healthy standard cell culture (SCC) and T2D-like glucolipotoxic (GLT) conditions. GLT significantly impeded β-cell mass and function by inducing oxidative and endoplasmic reticulum (ER) stress. TMAO normalized GLT-mediated damage in β-cells and primary islet function. Acute 40µM TMAO recovered insulin production, insulin granule formation, and insulin secretion by upregulating the IRE1α unfolded protein response to GLT-induced ER and oxidative stress. These novel results demonstrate that TMAO protects β-cell function and suggest that TMAO may play a beneficial molecular role in diet-induced T2D conditions. |
format | Online Article Text |
id | pubmed-8699500 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86995002021-12-24 Gut Metabolite Trimethylamine N-Oxide Protects INS-1 β-Cell and Rat Islet Function under Diabetic Glucolipotoxic Conditions Krueger, Emily S. Beales, Joseph L. Russon, Kacie B. Elison, Weston S. Davis, Jordan R. Hansen, Jackson M. Neilson, Andrew P. Hansen, Jason M. Tessem, Jeffery S. Biomolecules Article Serum accumulation of the gut microbial metabolite trimethylamine N-oxide (TMAO) is associated with high caloric intake and type 2 diabetes (T2D). Impaired pancreatic β-cell function is a hallmark of diet-induced T2D, which is linked to hyperglycemia and hyperlipidemia. While TMAO production via the gut microbiome-liver axis is well defined, its molecular effects on metabolic tissues are unclear, since studies in various tissues show deleterious and beneficial TMAO effects. We investigated the molecular effects of TMAO on functional β-cell mass. We hypothesized that TMAO may damage functional β-cell mass by inhibiting β-cell viability, survival, proliferation, or function to promote T2D pathogenesis. We treated INS-1 832/13 β-cells and primary rat islets with physiological TMAO concentrations and compared functional β-cell mass under healthy standard cell culture (SCC) and T2D-like glucolipotoxic (GLT) conditions. GLT significantly impeded β-cell mass and function by inducing oxidative and endoplasmic reticulum (ER) stress. TMAO normalized GLT-mediated damage in β-cells and primary islet function. Acute 40µM TMAO recovered insulin production, insulin granule formation, and insulin secretion by upregulating the IRE1α unfolded protein response to GLT-induced ER and oxidative stress. These novel results demonstrate that TMAO protects β-cell function and suggest that TMAO may play a beneficial molecular role in diet-induced T2D conditions. MDPI 2021-12-17 /pmc/articles/PMC8699500/ /pubmed/34944536 http://dx.doi.org/10.3390/biom11121892 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Krueger, Emily S. Beales, Joseph L. Russon, Kacie B. Elison, Weston S. Davis, Jordan R. Hansen, Jackson M. Neilson, Andrew P. Hansen, Jason M. Tessem, Jeffery S. Gut Metabolite Trimethylamine N-Oxide Protects INS-1 β-Cell and Rat Islet Function under Diabetic Glucolipotoxic Conditions |
title | Gut Metabolite Trimethylamine N-Oxide Protects INS-1 β-Cell and Rat Islet Function under Diabetic Glucolipotoxic Conditions |
title_full | Gut Metabolite Trimethylamine N-Oxide Protects INS-1 β-Cell and Rat Islet Function under Diabetic Glucolipotoxic Conditions |
title_fullStr | Gut Metabolite Trimethylamine N-Oxide Protects INS-1 β-Cell and Rat Islet Function under Diabetic Glucolipotoxic Conditions |
title_full_unstemmed | Gut Metabolite Trimethylamine N-Oxide Protects INS-1 β-Cell and Rat Islet Function under Diabetic Glucolipotoxic Conditions |
title_short | Gut Metabolite Trimethylamine N-Oxide Protects INS-1 β-Cell and Rat Islet Function under Diabetic Glucolipotoxic Conditions |
title_sort | gut metabolite trimethylamine n-oxide protects ins-1 β-cell and rat islet function under diabetic glucolipotoxic conditions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8699500/ https://www.ncbi.nlm.nih.gov/pubmed/34944536 http://dx.doi.org/10.3390/biom11121892 |
work_keys_str_mv | AT kruegeremilys gutmetabolitetrimethylaminenoxideprotectsins1bcellandratisletfunctionunderdiabeticglucolipotoxicconditions AT bealesjosephl gutmetabolitetrimethylaminenoxideprotectsins1bcellandratisletfunctionunderdiabeticglucolipotoxicconditions AT russonkacieb gutmetabolitetrimethylaminenoxideprotectsins1bcellandratisletfunctionunderdiabeticglucolipotoxicconditions AT elisonwestons gutmetabolitetrimethylaminenoxideprotectsins1bcellandratisletfunctionunderdiabeticglucolipotoxicconditions AT davisjordanr gutmetabolitetrimethylaminenoxideprotectsins1bcellandratisletfunctionunderdiabeticglucolipotoxicconditions AT hansenjacksonm gutmetabolitetrimethylaminenoxideprotectsins1bcellandratisletfunctionunderdiabeticglucolipotoxicconditions AT neilsonandrewp gutmetabolitetrimethylaminenoxideprotectsins1bcellandratisletfunctionunderdiabeticglucolipotoxicconditions AT hansenjasonm gutmetabolitetrimethylaminenoxideprotectsins1bcellandratisletfunctionunderdiabeticglucolipotoxicconditions AT tessemjefferys gutmetabolitetrimethylaminenoxideprotectsins1bcellandratisletfunctionunderdiabeticglucolipotoxicconditions |