Cargando…
Urine-Based Metabolomics and Machine Learning Reveals Metabolites Associated with Renal Cell Carcinoma Stage
SIMPLE SUMMARY: Every year, hundreds of thousands of cases of renal carcinoma (RCC) are reported worldwide. Accurate staging of the disease is important for treatment and prognosis purposes; however, contemporary methods such as computerized tomography (CT) and biopsies are expensive and prone to sa...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8699523/ https://www.ncbi.nlm.nih.gov/pubmed/34944874 http://dx.doi.org/10.3390/cancers13246253 |
Sumario: | SIMPLE SUMMARY: Every year, hundreds of thousands of cases of renal carcinoma (RCC) are reported worldwide. Accurate staging of the disease is important for treatment and prognosis purposes; however, contemporary methods such as computerized tomography (CT) and biopsies are expensive and prone to sampling errors, respectively. As such, a non-invasive diagnostic assay for staging would be beneficial. This study aims to investigate urine metabolites as potential biomarkers to stage RCC using machine learning techniques to mine the complex datasets produced. We present a 24-metabolite panel that discriminates between early stage and advanced stage RCC with 87% accuracy in our study cohort. ABSTRACT: Urine metabolomics profiling has potential for non-invasive RCC staging, in addition to providing metabolic insights into disease progression. In this study, we utilized liquid chromatography-mass spectrometry (LC-MS), nuclear magnetic resonance (NMR), and machine learning (ML) for the discovery of urine metabolites associated with RCC progression. Two machine learning questions were posed in the study: Binary classification into early RCC (stage I and II) and advanced RCC stages (stage III and IV), and RCC tumor size estimation through regression analysis. A total of 82 RCC patients with known tumor size and metabolomic measurements were used for the regression task, and 70 RCC patients with complete tumor-nodes-metastasis (TNM) staging information were used for the classification tasks under ten-fold cross-validation conditions. A voting ensemble regression model consisting of elastic net, ridge, and support vector regressor predicted RCC tumor size with a R(2) value of 0.58. A voting classifier model consisting of random forest, support vector machines, logistic regression, and adaptive boosting yielded an AUC of 0.96 and an accuracy of 87%. Some identified metabolites associated with renal cell carcinoma progression included 4-guanidinobutanoic acid, 7-aminomethyl-7-carbaguanine, 3-hydroxyanthranilic acid, lysyl-glycine, glycine, citrate, and pyruvate. Overall, we identified a urine metabolic phenotype associated with renal cell carcinoma stage, exploring the promise of a urine-based metabolomic assay for staging this disease. |
---|