Cargando…
Supervised and unsupervised learning to classify scoliosis and healthy subjects based on non-invasive rasterstereography analysis
The aim of our study was to classify scoliosis compared to to healthy patients using non-invasive surface acquisition via Video-raster-stereography, without prior knowledge of radiographic data. Data acquisitions were made using Rasterstereography; unsupervised learning was adopted for clustering an...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8699618/ https://www.ncbi.nlm.nih.gov/pubmed/34941924 http://dx.doi.org/10.1371/journal.pone.0261511 |
Sumario: | The aim of our study was to classify scoliosis compared to to healthy patients using non-invasive surface acquisition via Video-raster-stereography, without prior knowledge of radiographic data. Data acquisitions were made using Rasterstereography; unsupervised learning was adopted for clustering and supervised learning was used for prediction model Support Vector Machine and Deep Network architectures were compared. A M-fold cross validation procedure was performed to evaluate the results. The accuracy and balanced accuracy of the best supervised model were close to 85%. Classification rates by class were measured using the confusion matrix, giving a low percentage of unclassified patients. Rasterstereography has turned out to be a good tool to distinguish subject with scoliosis from healthy patients limiting the exposure to unnecessary radiations. |
---|