Cargando…
Cancer-Cell Deep-Learning Classification by Integrating Quantitative-Phase Spatial and Temporal Fluctuations
We present a new classification approach for live cells, integrating together the spatial and temporal fluctuation maps and the quantitative optical thickness map of the cell, as acquired by common-path quantitative-phase dynamic imaging and processed with a deep-learning framework. We demonstrate t...
Autores principales: | Ben Baruch, Shani, Rotman-Nativ, Noa, Baram, Alon, Greenspan, Hayit, Shaked, Natan T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8699730/ https://www.ncbi.nlm.nih.gov/pubmed/34943859 http://dx.doi.org/10.3390/cells10123353 |
Ejemplares similares
-
Deep learning for medical image analysis
por: Zhou, S Kevin, et al.
Publicado: (2017) -
Patch-Based Segmentation with Spatial Consistency: Application to MS Lesions in Brain MRI
por: Mechrez, Roey, et al.
Publicado: (2016) -
On-chip label-free cell classification based directly on off-axis holograms and spatial-frequency-invariant deep learning
por: Dudaie, Matan, et al.
Publicado: (2023) -
The classification of wheat yellow rust disease based on a combination of textural and deep features
por: Hayıt, Tolga, et al.
Publicado: (2023) -
Multiple Sclerosis Lesion Detection Using Constrained GMM and Curve Evolution
por: Freifeld, Oren, et al.
Publicado: (2009)