Cargando…
Assessing PD-L1 Expression Status Using Radiomic Features from Contrast-Enhanced Breast MRI in Breast Cancer Patients: Initial Results
SIMPLE SUMMARY: To our knowledge, this is the first study assessing radiomics coupled with machine learning from MRI-derived features to predict PD-L1 expression status in biopsy-proven triple negative breast cancers and comparing the performance of this approach with the performance of qualitative...
Autores principales: | Lo Gullo, Roberto, Wen, Hannah, Reiner, Jeffrey S., Hoda, Raza, Sevilimedu, Varadan, Martinez, Danny F., Thakur, Sunitha B., Jochelson, Maxine S., Gibbs, Peter, Pinker, Katja |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8699819/ https://www.ncbi.nlm.nih.gov/pubmed/34944898 http://dx.doi.org/10.3390/cancers13246273 |
Ejemplares similares
-
Radiomics and Machine Learning with Multiparametric Breast MRI for Improved Diagnostic Accuracy in Breast Cancer Diagnosis
por: Daimiel Naranjo, Isaac, et al.
Publicado: (2021) -
Diagnostic value of diffusion-weighted imaging with synthetic b-values in breast tumors: comparison with dynamic contrast-enhanced and multiparametric MRI
por: Daimiel Naranjo, Isaac, et al.
Publicado: (2020) -
Breast Lesion Classification with Multiparametric Breast MRI Using Radiomics and Machine Learning: A Comparison with Radiologists’ Performance
por: Daimiel Naranjo, Isaac, et al.
Publicado: (2022) -
MRI background parenchymal enhancement, fibroglandular tissue, and mammographic breast density in patients with invasive lobular breast cancer on adjuvant endocrine hormonal treatment: associations with survival
por: Lo Gullo, Roberto, et al.
Publicado: (2020) -
Improved characterization of sub-centimeter enhancing breast masses on MRI with radiomics and machine learning in BRCA mutation carriers
por: Lo Gullo, Roberto, et al.
Publicado: (2020)