Cargando…
Interventional Fairness with Indirect Knowledge of Unobserved Protected Attributes
The deployment of machine learning (ML) systems in applications with societal impact has motivated the study of fairness for marginalized groups. Often, the protected attribute is absent from the training dataset for legal reasons. However, datasets still contain proxy attributes that capture protec...
Autores principales: | Galhotra, Sainyam, Shanmugam, Karthikeyan, Sattigeri, Prasanna, Varshney, Kush R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8699829/ https://www.ncbi.nlm.nih.gov/pubmed/34945877 http://dx.doi.org/10.3390/e23121571 |
Ejemplares similares
-
A Maximal Correlation Framework for Fair Machine Learning
por: Lee, Joshua, et al.
Publicado: (2022) -
Observable and Unobservable Mechanical Motion
por: Müller, J. Gerhard
Publicado: (2020) -
Unobserved variables: models and misunderstandings
por: Bartholomew, David J
Publicado: (2013) -
Time series modelling with unobserved components
por: Pelagatti, Matteo M
Publicado: (2015) -
Surgical assessment: measuring unobserved health
por: Crump, Trafford, et al.
Publicado: (2015)