Cargando…

Right-Censored Time Series Modeling by Modified Semi-Parametric A-Spline Estimator

This paper focuses on the adaptive spline (A-spline) fitting of the semiparametric regression model to time series data with right-censored observations. Typically, there are two main problems that need to be solved in such a case: dealing with censored data and obtaining a proper A-spline estimator...

Descripción completa

Detalles Bibliográficos
Autores principales: Aydın, Dursun, Ahmed, Syed Ejaz, Yılmaz, Ersin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8699840/
https://www.ncbi.nlm.nih.gov/pubmed/34945891
http://dx.doi.org/10.3390/e23121586
Descripción
Sumario:This paper focuses on the adaptive spline (A-spline) fitting of the semiparametric regression model to time series data with right-censored observations. Typically, there are two main problems that need to be solved in such a case: dealing with censored data and obtaining a proper A-spline estimator for the components of the semiparametric model. The first problem is traditionally solved by the synthetic data approach based on the Kaplan–Meier estimator. In practice, although the synthetic data technique is one of the most widely used solutions for right-censored observations, the transformed data’s structure is distorted, especially for heavily censored datasets, due to the nature of the approach. In this paper, we introduced a modified semiparametric estimator based on the A-spline approach to overcome data irregularity with minimum information loss and to resolve the second problem described above. In addition, the semiparametric B-spline estimator was used as a benchmark method to gauge the success of the A-spline estimator. To this end, a detailed Monte Carlo simulation study and a real data sample were carried out to evaluate the performance of the proposed estimator and to make a practical comparison.