Cargando…
Emerging Molecular Dependencies of Mutant EGFR-Driven Non-Small Cell Lung Cancer
Epidermal growth factor receptor (EGFR) mutations are the molecular driver of a subset of non-small cell lung cancers (NSCLC); tumors that harbor these mutations are often dependent on sustained oncogene signaling for survival, a concept known as “oncogene addiction”. Inhibiting EGFR with tyrosine k...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8699920/ https://www.ncbi.nlm.nih.gov/pubmed/34944063 http://dx.doi.org/10.3390/cells10123553 |
Sumario: | Epidermal growth factor receptor (EGFR) mutations are the molecular driver of a subset of non-small cell lung cancers (NSCLC); tumors that harbor these mutations are often dependent on sustained oncogene signaling for survival, a concept known as “oncogene addiction”. Inhibiting EGFR with tyrosine kinase inhibitors has improved clinical outcomes for patients; however, successive generations of inhibitors have failed to prevent the eventual emergence of resistance to targeted agents. Although these tumors have a well-established dependency on EGFR signaling, there remain questions about the underlying genetic mechanisms necessary for EGFR-driven oncogenesis and the factors that allow tumor cells to escape EGFR dependence. In this review, we highlight the latest findings on mutant EGFR dependencies, co-operative drivers, and molecular mechanisms that underlie sensitivity to EGFR inhibitors. Additionally, we offer perspective on how these discoveries may inform novel combination therapies tailored to EGFR mutant NSCLC. |
---|