Cargando…
Regularization, Bayesian Inference, and Machine Learning Methods for Inverse Problems †
Classical methods for inverse problems are mainly based on regularization theory, in particular those, that are based on optimization of a criterion with two parts: a data-model matching and a regularization term. Different choices for these two terms and a great number of optimization algorithms ha...
Autor principal: | Mohammad-Djafari, Ali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8699938/ https://www.ncbi.nlm.nih.gov/pubmed/34945979 http://dx.doi.org/10.3390/e23121673 |
Ejemplares similares
-
Regularization and Bayesian methods for inverse problems in signal and image processing
por: Giovannelli , Jean-François, et al.
Publicado: (2015) -
Bayesian inference and maximum entropy methods in science and engineering: 20th International Workshop
por: Mohammad-Djafari, Ali
Publicado: (2001) -
26th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering
por: Mohammad-Djafari, Ali
Publicado: (2006) -
Regularization of inverse problems
por: Engl, Heinz W, et al.
Publicado: (1996) -
Inverse problems in vision and 3D tomography
por: Mohamad-Djafari, Ali
Publicado: (2013)