Cargando…
Less is more? Ultra-low carbohydrate diet and working dogs’ performance
New Zealand farm working dogs are supreme athletes that are crucial to agriculture in the region. The effects that low or high dietary carbohydrate (CHO) content might have on their interstitial glucose (IG) and activity during work are unknown. The goals of the study were to determine if the concen...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8699952/ https://www.ncbi.nlm.nih.gov/pubmed/34941910 http://dx.doi.org/10.1371/journal.pone.0261506 |
Sumario: | New Zealand farm working dogs are supreme athletes that are crucial to agriculture in the region. The effects that low or high dietary carbohydrate (CHO) content might have on their interstitial glucose (IG) and activity during work are unknown. The goals of the study were to determine if the concentration of IG and delta-g (a measurement of activity) will be lower in dogs fed an ultra-low CHO high fat diet in comparison to dogs fed a high CHO low fat diet, and to determine if low concentrations of IG are followed by reduced physical activity. We hypothesized that feeding working farm dogs an ultra-low CHO diet would reduce their IG concentrations which in turn would reduce physical activity during work. We prospectively recruited 22 farm dogs from four farms. At each farm, dogs were randomized to one of two diets and had a month of dietary acclimation to their allocated diet. The macronutrient proportions as a percentage of metabolizable energy (%ME) for the high CHO low fat diet (Diet 1) were 23% protein, 25% fat, and 52% CHO, and for the ultra-low CHO high fat diet (Diet 2) 37% protein, 63% fat, and 1% CHO. Following the acclimation period, we continuously monitored IG concentrations with flash glucose monitoring devices, and delta-g using triaxial accelerometers for 96 h. Dogs fed Diet 2 had a lower area under the curve (±SE) for IG (AUC (Diet 2) = 497 ± 4 mmol/L/96h, AUC (Diet 1) = 590 ± 3 mmol/L/96h; P = 0.002) but a higher area under the curve (±SE) for delta-g (AUC (Diet 2) = 104,122 ± 6,045 delta-g/96h, AUC (Diet 1) = 80,904 ± 4,950 delta-g/96h; P< 0.001). Interstitial glucose concentrations increased as the activity level increased (P < 0.001) and were lower for Diet 2 within each activity level (P < 0.001). The overall incidence of low IG readings (< 3.5 mmol/L) was 119/3810 (3.12%), of which 110 (92.4%) readings occurred in the Diet 2 group (P = 0.001). In the Diet 2 group, 99/110 (90%) of the low IG events occurred during the resting period (19:00–06:00). We conclude that feeding Diet 2 (ultra-low CHO high fat diet) to working farm dogs was associated with increased delta-g despite decreased IG concentrations. Interstitial glucose concentrations were positively associated with dogs’ activity levels independent of diet. Lastly, events of low IG occurred at a low incidence and were predominantly seen between 19:00–06:00 in dogs fed the ultra-low CHO high fat diet. |
---|