Cargando…
Quantifying Non-Stationarity with Information Theory
We introduce an index based on information theory to quantify the stationarity of a stochastic process. The index compares on the one hand the information contained in the increment at the time scale [Formula: see text] of the process at time t with, on the other hand, the extra information in the v...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700068/ https://www.ncbi.nlm.nih.gov/pubmed/34945915 http://dx.doi.org/10.3390/e23121609 |
_version_ | 1784620667044364288 |
---|---|
author | Granero-Belinchón, Carlos Roux, Stéphane G. Garnier, Nicolas B. |
author_facet | Granero-Belinchón, Carlos Roux, Stéphane G. Garnier, Nicolas B. |
author_sort | Granero-Belinchón, Carlos |
collection | PubMed |
description | We introduce an index based on information theory to quantify the stationarity of a stochastic process. The index compares on the one hand the information contained in the increment at the time scale [Formula: see text] of the process at time t with, on the other hand, the extra information in the variable at time t that is not present at time [Formula: see text]. By varying the scale [Formula: see text] , the index can explore a full range of scales. We thus obtain a multi-scale quantity that is not restricted to the first two moments of the density distribution, nor to the covariance, but that probes the complete dependences in the process. This index indeed provides a measure of the regularity of the process at a given scale. Not only is this index able to indicate whether a realization of the process is stationary, but its evolution across scales also indicates how rough and non-stationary it is. We show how the index behaves for various synthetic processes proposed to model fluid turbulence, as well as on experimental fluid turbulence measurements. |
format | Online Article Text |
id | pubmed-8700068 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87000682021-12-24 Quantifying Non-Stationarity with Information Theory Granero-Belinchón, Carlos Roux, Stéphane G. Garnier, Nicolas B. Entropy (Basel) Article We introduce an index based on information theory to quantify the stationarity of a stochastic process. The index compares on the one hand the information contained in the increment at the time scale [Formula: see text] of the process at time t with, on the other hand, the extra information in the variable at time t that is not present at time [Formula: see text]. By varying the scale [Formula: see text] , the index can explore a full range of scales. We thus obtain a multi-scale quantity that is not restricted to the first two moments of the density distribution, nor to the covariance, but that probes the complete dependences in the process. This index indeed provides a measure of the regularity of the process at a given scale. Not only is this index able to indicate whether a realization of the process is stationary, but its evolution across scales also indicates how rough and non-stationary it is. We show how the index behaves for various synthetic processes proposed to model fluid turbulence, as well as on experimental fluid turbulence measurements. MDPI 2021-11-30 /pmc/articles/PMC8700068/ /pubmed/34945915 http://dx.doi.org/10.3390/e23121609 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Granero-Belinchón, Carlos Roux, Stéphane G. Garnier, Nicolas B. Quantifying Non-Stationarity with Information Theory |
title | Quantifying Non-Stationarity with Information Theory |
title_full | Quantifying Non-Stationarity with Information Theory |
title_fullStr | Quantifying Non-Stationarity with Information Theory |
title_full_unstemmed | Quantifying Non-Stationarity with Information Theory |
title_short | Quantifying Non-Stationarity with Information Theory |
title_sort | quantifying non-stationarity with information theory |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700068/ https://www.ncbi.nlm.nih.gov/pubmed/34945915 http://dx.doi.org/10.3390/e23121609 |
work_keys_str_mv | AT granerobelinchoncarlos quantifyingnonstationaritywithinformationtheory AT rouxstephaneg quantifyingnonstationaritywithinformationtheory AT garniernicolasb quantifyingnonstationaritywithinformationtheory |