Cargando…
A Prediction Model of Incident Cardiovascular Disease in Patients with Sleep-Disordered Breathing
(1) Purpose: this study proposes a method of prediction of cardiovascular diseases (CVDs) that can develop within ten years in patients with sleep-disordered breathing (SDB). (2) Methods: For the design and evaluation of the algorithm, the Sleep Heart Health Study (SHHS) data from the 3367 participa...
Autores principales: | Park, Jong-Uk, Urtnasan, Erdenebayar, Kim, Sang-Ha, Lee, Kyoung-Joung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700095/ https://www.ncbi.nlm.nih.gov/pubmed/34943449 http://dx.doi.org/10.3390/diagnostics11122212 |
Ejemplares similares
-
Deep Convolutional Recurrent Model for Automatic Scoring Sleep Stages Based on Single-Lead ECG Signal
por: Urtnasan, Erdenebayar, et al.
Publicado: (2022) -
Obstructive Sleep Apnea Screening Using a Piezo-Electric Sensor
por: Erdenebayar, Urtnasan, et al.
Publicado: (2017) -
Identification of Sleep Apnea Severity Based on Deep Learning from a Short-term Normal ECG
por: Urtnasan, Erdenebayar, et al.
Publicado: (2020) -
Deep Learning for Automatic Detection of Periodic Limb Movement Disorder Based on Electrocardiogram Signals
por: Urtnasan, Erdenebayar, et al.
Publicado: (2022) -
Automatic Prediction of Atrial Fibrillation Based on Convolutional Neural Network Using a Short-term Normal Electrocardiogram Signal
por: Erdenebayar, Urtnasan, et al.
Publicado: (2019)