Cargando…
Connectivity Analysis for Multivariate Time Series: Correlation vs. Causality
The study of the interdependence relationships of the variables of an examined system is of great importance and remains a challenging task. There are two distinct cases of interdependence. In the first case, the variables evolve in synchrony, connections are undirected and the connectivity is exami...
Autor principal: | Papana, Angeliki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700128/ https://www.ncbi.nlm.nih.gov/pubmed/34945876 http://dx.doi.org/10.3390/e23121570 |
Ejemplares similares
-
Non-Uniform Embedding Scheme and Low-Dimensional Approximation Methods for Causality Detection
por: Papana, Angeliki
Publicado: (2020) -
Normalized Multivariate Time Series Causality Analysis and Causal Graph Reconstruction
por: Liang, X. San
Publicado: (2021) -
Exploitation of Information as a Trading Characteristic: A Causality-Based Analysis of Simulated and Financial Data
por: Kyrtsou, Catherine, et al.
Publicado: (2020) -
Assessment of resampling methods for causality testing: A note on the US inflation behavior
por: Papana, Angeliki, et al.
Publicado: (2017) -
Detecting Causality in Multivariate Time Series via Non-Uniform Embedding
por: Jia, Ziyu, et al.
Publicado: (2019)