Cargando…
Probabilistic Autoencoder Using Fisher Information
Neural networks play a growing role in many scientific disciplines, including physics. Variational autoencoders (VAEs) are neural networks that are able to represent the essential information of a high dimensional data set in a low dimensional latent space, which have a probabilistic interpretation....
Autores principales: | Zacherl, Johannes, Frank, Philipp, Enßlin, Torsten A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700142/ https://www.ncbi.nlm.nih.gov/pubmed/34945946 http://dx.doi.org/10.3390/e23121640 |
Ejemplares similares
-
Discrete Versions of Jensen–Fisher, Fisher and Bayes–Fisher Information Measures of Finite Mixture Distributions
por: Kharazmi, Omid, et al.
Publicado: (2021) -
Information Flows of Diverse Autoencoders
por: Lee, Sungyeop, et al.
Publicado: (2021) -
Decoherence, Anti-Decoherence, and Fisher Information
por: Kowalski, Andres M., et al.
Publicado: (2021) -
Fisher Information Perspective of Pauli’s Electron †
por: Yahalom, Asher
Publicado: (2022) -
Information Field Theory and Artificial Intelligence
por: Enßlin, Torsten
Publicado: (2022)