Cargando…
A Lightweight YOLOv4-Based Forestry Pest Detection Method Using Coordinate Attention and Feature Fusion
Traditional pest detection methods are challenging to use in complex forestry environments due to their low accuracy and speed. To address this issue, this paper proposes the YOLOv4_MF model. The YOLOv4_MF model utilizes MobileNetv2 as the feature extraction block and replaces the traditional convol...
Autores principales: | Zha, Mingfeng, Qian, Wenbin, Yi, Wenlong, Hua, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700145/ https://www.ncbi.nlm.nih.gov/pubmed/34945892 http://dx.doi.org/10.3390/e23121587 |
Ejemplares similares
-
YOLOv5-AC: Attention Mechanism-Based Lightweight YOLOv5 for Track Pedestrian Detection
por: Lv, Haohui, et al.
Publicado: (2022) -
SF-YOLOv5: A Lightweight Small Object Detection Algorithm Based on Improved Feature Fusion Mode
por: Liu, Haiying, et al.
Publicado: (2022) -
Pedestrian detection algorithm integrating large kernel attention and YOLOV5 lightweight model
por: Yin, Yuping, et al.
Publicado: (2023) -
Insect pests of tropical forestry /
por: Speight, Martin R.
Publicado: (2001) -
YOLOv5s-CA: A Modified YOLOv5s Network with Coordinate Attention for Underwater Target Detection
por: Wen, Ge, et al.
Publicado: (2023)