Cargando…

Estimating Glomerular Filtration Rate from Serum Myo-Inositol, Valine, Creatinine and Cystatin C

Assessment of renal function relies on the estimation of the glomerular filtration rate (eGFR). Existing eGFR equations, usually based on serum levels of creatinine and/or cystatin C, are not uniformly accurate across patient populations. In the present study, we expanded a recent proof-of-concept a...

Descripción completa

Detalles Bibliográficos
Autores principales: Stämmler, Frank, Grassi, Marcello, Meeusen, Jeffrey W., Lieske, John C., Dasari, Surendra, Dubourg, Laurence, Lemoine, Sandrine, Ehrich, Jochen, Schiffer, Eric
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700166/
https://www.ncbi.nlm.nih.gov/pubmed/34943527
http://dx.doi.org/10.3390/diagnostics11122291
_version_ 1784620691200409600
author Stämmler, Frank
Grassi, Marcello
Meeusen, Jeffrey W.
Lieske, John C.
Dasari, Surendra
Dubourg, Laurence
Lemoine, Sandrine
Ehrich, Jochen
Schiffer, Eric
author_facet Stämmler, Frank
Grassi, Marcello
Meeusen, Jeffrey W.
Lieske, John C.
Dasari, Surendra
Dubourg, Laurence
Lemoine, Sandrine
Ehrich, Jochen
Schiffer, Eric
author_sort Stämmler, Frank
collection PubMed
description Assessment of renal function relies on the estimation of the glomerular filtration rate (eGFR). Existing eGFR equations, usually based on serum levels of creatinine and/or cystatin C, are not uniformly accurate across patient populations. In the present study, we expanded a recent proof-of-concept approach to optimize an eGFR equation targeting the adult population with and without chronic kidney disease (CKD), based on a nuclear magnetic resonance spectroscopy (NMR) derived ‘metabolite constellation’ (GFR(NMR)). A total of 1855 serum samples were partitioned into development, internal validation and external validation datasets. The new GFR(NMR) equation used serum myo-inositol, valine, creatinine and cystatin C plus age and sex. GFR(NMR) had a lower bias to tracer measured GFR (mGFR) than existing eGFR equations, with a median bias (95% confidence interval [CI]) of 0.0 (−1.0; 1.0) mL/min/1.73 m(2) for GFR(NMR) vs. −6.0 (−7.0; −5.0) mL/min/1.73 m(2) for the Chronic Kidney Disease Epidemiology Collaboration equation that combines creatinine and cystatin C (CKD-EPI(2012)) (p < 0.0001). Accuracy (95% CI) within 15% of mGFR (1-P15) was 38.8% (34.3; 42.5) for GFR(NMR) vs. 47.3% (43.2; 51.5) for CKD-EPI(2012) (p < 0.010). Thus, GFR(NMR) holds promise as an alternative way to assess eGFR with superior accuracy in adult patients with and without CKD.
format Online
Article
Text
id pubmed-8700166
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-87001662021-12-24 Estimating Glomerular Filtration Rate from Serum Myo-Inositol, Valine, Creatinine and Cystatin C Stämmler, Frank Grassi, Marcello Meeusen, Jeffrey W. Lieske, John C. Dasari, Surendra Dubourg, Laurence Lemoine, Sandrine Ehrich, Jochen Schiffer, Eric Diagnostics (Basel) Article Assessment of renal function relies on the estimation of the glomerular filtration rate (eGFR). Existing eGFR equations, usually based on serum levels of creatinine and/or cystatin C, are not uniformly accurate across patient populations. In the present study, we expanded a recent proof-of-concept approach to optimize an eGFR equation targeting the adult population with and without chronic kidney disease (CKD), based on a nuclear magnetic resonance spectroscopy (NMR) derived ‘metabolite constellation’ (GFR(NMR)). A total of 1855 serum samples were partitioned into development, internal validation and external validation datasets. The new GFR(NMR) equation used serum myo-inositol, valine, creatinine and cystatin C plus age and sex. GFR(NMR) had a lower bias to tracer measured GFR (mGFR) than existing eGFR equations, with a median bias (95% confidence interval [CI]) of 0.0 (−1.0; 1.0) mL/min/1.73 m(2) for GFR(NMR) vs. −6.0 (−7.0; −5.0) mL/min/1.73 m(2) for the Chronic Kidney Disease Epidemiology Collaboration equation that combines creatinine and cystatin C (CKD-EPI(2012)) (p < 0.0001). Accuracy (95% CI) within 15% of mGFR (1-P15) was 38.8% (34.3; 42.5) for GFR(NMR) vs. 47.3% (43.2; 51.5) for CKD-EPI(2012) (p < 0.010). Thus, GFR(NMR) holds promise as an alternative way to assess eGFR with superior accuracy in adult patients with and without CKD. MDPI 2021-12-07 /pmc/articles/PMC8700166/ /pubmed/34943527 http://dx.doi.org/10.3390/diagnostics11122291 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Stämmler, Frank
Grassi, Marcello
Meeusen, Jeffrey W.
Lieske, John C.
Dasari, Surendra
Dubourg, Laurence
Lemoine, Sandrine
Ehrich, Jochen
Schiffer, Eric
Estimating Glomerular Filtration Rate from Serum Myo-Inositol, Valine, Creatinine and Cystatin C
title Estimating Glomerular Filtration Rate from Serum Myo-Inositol, Valine, Creatinine and Cystatin C
title_full Estimating Glomerular Filtration Rate from Serum Myo-Inositol, Valine, Creatinine and Cystatin C
title_fullStr Estimating Glomerular Filtration Rate from Serum Myo-Inositol, Valine, Creatinine and Cystatin C
title_full_unstemmed Estimating Glomerular Filtration Rate from Serum Myo-Inositol, Valine, Creatinine and Cystatin C
title_short Estimating Glomerular Filtration Rate from Serum Myo-Inositol, Valine, Creatinine and Cystatin C
title_sort estimating glomerular filtration rate from serum myo-inositol, valine, creatinine and cystatin c
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700166/
https://www.ncbi.nlm.nih.gov/pubmed/34943527
http://dx.doi.org/10.3390/diagnostics11122291
work_keys_str_mv AT stammlerfrank estimatingglomerularfiltrationratefromserummyoinositolvalinecreatinineandcystatinc
AT grassimarcello estimatingglomerularfiltrationratefromserummyoinositolvalinecreatinineandcystatinc
AT meeusenjeffreyw estimatingglomerularfiltrationratefromserummyoinositolvalinecreatinineandcystatinc
AT lieskejohnc estimatingglomerularfiltrationratefromserummyoinositolvalinecreatinineandcystatinc
AT dasarisurendra estimatingglomerularfiltrationratefromserummyoinositolvalinecreatinineandcystatinc
AT dubourglaurence estimatingglomerularfiltrationratefromserummyoinositolvalinecreatinineandcystatinc
AT lemoinesandrine estimatingglomerularfiltrationratefromserummyoinositolvalinecreatinineandcystatinc
AT ehrichjochen estimatingglomerularfiltrationratefromserummyoinositolvalinecreatinineandcystatinc
AT schiffereric estimatingglomerularfiltrationratefromserummyoinositolvalinecreatinineandcystatinc