Cargando…
Estimating Glomerular Filtration Rate from Serum Myo-Inositol, Valine, Creatinine and Cystatin C
Assessment of renal function relies on the estimation of the glomerular filtration rate (eGFR). Existing eGFR equations, usually based on serum levels of creatinine and/or cystatin C, are not uniformly accurate across patient populations. In the present study, we expanded a recent proof-of-concept a...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700166/ https://www.ncbi.nlm.nih.gov/pubmed/34943527 http://dx.doi.org/10.3390/diagnostics11122291 |
_version_ | 1784620691200409600 |
---|---|
author | Stämmler, Frank Grassi, Marcello Meeusen, Jeffrey W. Lieske, John C. Dasari, Surendra Dubourg, Laurence Lemoine, Sandrine Ehrich, Jochen Schiffer, Eric |
author_facet | Stämmler, Frank Grassi, Marcello Meeusen, Jeffrey W. Lieske, John C. Dasari, Surendra Dubourg, Laurence Lemoine, Sandrine Ehrich, Jochen Schiffer, Eric |
author_sort | Stämmler, Frank |
collection | PubMed |
description | Assessment of renal function relies on the estimation of the glomerular filtration rate (eGFR). Existing eGFR equations, usually based on serum levels of creatinine and/or cystatin C, are not uniformly accurate across patient populations. In the present study, we expanded a recent proof-of-concept approach to optimize an eGFR equation targeting the adult population with and without chronic kidney disease (CKD), based on a nuclear magnetic resonance spectroscopy (NMR) derived ‘metabolite constellation’ (GFR(NMR)). A total of 1855 serum samples were partitioned into development, internal validation and external validation datasets. The new GFR(NMR) equation used serum myo-inositol, valine, creatinine and cystatin C plus age and sex. GFR(NMR) had a lower bias to tracer measured GFR (mGFR) than existing eGFR equations, with a median bias (95% confidence interval [CI]) of 0.0 (−1.0; 1.0) mL/min/1.73 m(2) for GFR(NMR) vs. −6.0 (−7.0; −5.0) mL/min/1.73 m(2) for the Chronic Kidney Disease Epidemiology Collaboration equation that combines creatinine and cystatin C (CKD-EPI(2012)) (p < 0.0001). Accuracy (95% CI) within 15% of mGFR (1-P15) was 38.8% (34.3; 42.5) for GFR(NMR) vs. 47.3% (43.2; 51.5) for CKD-EPI(2012) (p < 0.010). Thus, GFR(NMR) holds promise as an alternative way to assess eGFR with superior accuracy in adult patients with and without CKD. |
format | Online Article Text |
id | pubmed-8700166 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87001662021-12-24 Estimating Glomerular Filtration Rate from Serum Myo-Inositol, Valine, Creatinine and Cystatin C Stämmler, Frank Grassi, Marcello Meeusen, Jeffrey W. Lieske, John C. Dasari, Surendra Dubourg, Laurence Lemoine, Sandrine Ehrich, Jochen Schiffer, Eric Diagnostics (Basel) Article Assessment of renal function relies on the estimation of the glomerular filtration rate (eGFR). Existing eGFR equations, usually based on serum levels of creatinine and/or cystatin C, are not uniformly accurate across patient populations. In the present study, we expanded a recent proof-of-concept approach to optimize an eGFR equation targeting the adult population with and without chronic kidney disease (CKD), based on a nuclear magnetic resonance spectroscopy (NMR) derived ‘metabolite constellation’ (GFR(NMR)). A total of 1855 serum samples were partitioned into development, internal validation and external validation datasets. The new GFR(NMR) equation used serum myo-inositol, valine, creatinine and cystatin C plus age and sex. GFR(NMR) had a lower bias to tracer measured GFR (mGFR) than existing eGFR equations, with a median bias (95% confidence interval [CI]) of 0.0 (−1.0; 1.0) mL/min/1.73 m(2) for GFR(NMR) vs. −6.0 (−7.0; −5.0) mL/min/1.73 m(2) for the Chronic Kidney Disease Epidemiology Collaboration equation that combines creatinine and cystatin C (CKD-EPI(2012)) (p < 0.0001). Accuracy (95% CI) within 15% of mGFR (1-P15) was 38.8% (34.3; 42.5) for GFR(NMR) vs. 47.3% (43.2; 51.5) for CKD-EPI(2012) (p < 0.010). Thus, GFR(NMR) holds promise as an alternative way to assess eGFR with superior accuracy in adult patients with and without CKD. MDPI 2021-12-07 /pmc/articles/PMC8700166/ /pubmed/34943527 http://dx.doi.org/10.3390/diagnostics11122291 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Stämmler, Frank Grassi, Marcello Meeusen, Jeffrey W. Lieske, John C. Dasari, Surendra Dubourg, Laurence Lemoine, Sandrine Ehrich, Jochen Schiffer, Eric Estimating Glomerular Filtration Rate from Serum Myo-Inositol, Valine, Creatinine and Cystatin C |
title | Estimating Glomerular Filtration Rate from Serum Myo-Inositol, Valine, Creatinine and Cystatin C |
title_full | Estimating Glomerular Filtration Rate from Serum Myo-Inositol, Valine, Creatinine and Cystatin C |
title_fullStr | Estimating Glomerular Filtration Rate from Serum Myo-Inositol, Valine, Creatinine and Cystatin C |
title_full_unstemmed | Estimating Glomerular Filtration Rate from Serum Myo-Inositol, Valine, Creatinine and Cystatin C |
title_short | Estimating Glomerular Filtration Rate from Serum Myo-Inositol, Valine, Creatinine and Cystatin C |
title_sort | estimating glomerular filtration rate from serum myo-inositol, valine, creatinine and cystatin c |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700166/ https://www.ncbi.nlm.nih.gov/pubmed/34943527 http://dx.doi.org/10.3390/diagnostics11122291 |
work_keys_str_mv | AT stammlerfrank estimatingglomerularfiltrationratefromserummyoinositolvalinecreatinineandcystatinc AT grassimarcello estimatingglomerularfiltrationratefromserummyoinositolvalinecreatinineandcystatinc AT meeusenjeffreyw estimatingglomerularfiltrationratefromserummyoinositolvalinecreatinineandcystatinc AT lieskejohnc estimatingglomerularfiltrationratefromserummyoinositolvalinecreatinineandcystatinc AT dasarisurendra estimatingglomerularfiltrationratefromserummyoinositolvalinecreatinineandcystatinc AT dubourglaurence estimatingglomerularfiltrationratefromserummyoinositolvalinecreatinineandcystatinc AT lemoinesandrine estimatingglomerularfiltrationratefromserummyoinositolvalinecreatinineandcystatinc AT ehrichjochen estimatingglomerularfiltrationratefromserummyoinositolvalinecreatinineandcystatinc AT schiffereric estimatingglomerularfiltrationratefromserummyoinositolvalinecreatinineandcystatinc |