Cargando…
Compensating Positron Range Effects of Ga-68 in Preclinical PET Imaging by Using Convolutional Neural Network: A Monte Carlo Simulation Study
This study aimed to investigate the feasibility of positron range correction based on three different convolutional neural network (CNN) models in preclinical PET imaging of Ga-68. The first model (CNN1) was originally designed for super-resolution recovery, while the second model (CNN2) and the thi...
Autor principal: | Yang, Ching-Ching |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700176/ https://www.ncbi.nlm.nih.gov/pubmed/34943511 http://dx.doi.org/10.3390/diagnostics11122275 |
Ejemplares similares
-
Monte Carlo investigation of PET [(68)Ga]Ga-DOTA-TOC activity-administration protocols for consistent image quality
por: Kalaitzidis, Philip, et al.
Publicado: (2023) -
Reducing scan time in (177)Lu planar scintigraphy using convolutional neural network: A Monte Carlo simulation study
por: Yang, Ching‐Ching, et al.
Publicado: (2023) -
Monte Carlo simulation of cylinders with short-range attractions
por: Hatch, Harold W., et al.
Publicado: (2018) -
Monte Carlo simulation of digital photon counting PET
por: Salvadori, Julien, et al.
Publicado: (2020) -
Proton therapy treatment monitoring with the DoPET system: activity range, positron emitters evaluation and comparison with Monte Carlo predictions
por: Muraro, S, et al.
Publicado: (2017)