Cargando…
Causal Discovery in High-Dimensional Point Process Networks with Hidden Nodes
Thanks to technological advances leading to near-continuous time observations, emerging multivariate point process data offer new opportunities for causal discovery. However, a key obstacle in achieving this goal is that many relevant processes may not be observed in practice. Naïve estimation appro...
Autores principales: | Wang, Xu, Shojaie, Ali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700240/ https://www.ncbi.nlm.nih.gov/pubmed/34945928 http://dx.doi.org/10.3390/e23121622 |
Ejemplares similares
-
Nonparametric Causal Structure Learning in High Dimensions
por: Chakraborty, Shubhadeep, et al.
Publicado: (2022) -
Uncovering hidden nodes in complex networks in the presence of noise
por: Su, Ri-Qi, et al.
Publicado: (2014) -
High-order dynamic Bayesian Network learning with hidden common causes for causal gene regulatory network
por: Lo, Leung-Yau, et al.
Publicado: (2015) -
Discovering graphical Granger causality using the truncating lasso penalty
por: Shojaie, Ali, et al.
Publicado: (2010) -
Time Delayed Causal Gene Regulatory Network Inference with Hidden Common Causes
por: Lo, Leung-Yau, et al.
Publicado: (2015)