Cargando…
Hierarchical Boosting Dual-Stage Feature Reduction Ensemble Model for Parkinson’s Disease Speech Data
As a neurodegenerative disease, Parkinson’s disease (PD) is hard to identify at the early stage, while using speech data to build a machine learning diagnosis model has proved effective in its early diagnosis. However, speech data show high degrees of redundancy, repetition, and unnecessary noise, w...
Autores principales: | Yang, Mingyao, Ma, Jie, Wang, Pin, Huang, Zhiyong, Li, Yongming, Liu, He, Hameed, Zeeshan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700329/ https://www.ncbi.nlm.nih.gov/pubmed/34943549 http://dx.doi.org/10.3390/diagnostics11122312 |
Ejemplares similares
-
Classification of Parkinson’s disease utilizing multi-edit nearest-neighbor and ensemble learning algorithms with speech samples
por: Zhang, He-Hua, et al.
Publicado: (2016) -
Insight into an unsupervised two-step sparse transfer learning algorithm for speech diagnosis of Parkinson’s disease
por: Li, Yongming, et al.
Publicado: (2021) -
Polyetheretherketone implants with hierarchical porous structure for boosted osseointegration
por: Chen, Zhiyong, et al.
Publicado: (2023) -
Analysis of Parkinson’s Disease Using an Imbalanced-Speech Dataset by Employing Decision Tree Ensemble Methods
por: Barukab, Omar, et al.
Publicado: (2022) -
Detecting Depression Using an Ensemble Logistic Regression Model Based on Multiple Speech Features
por: Jiang, Haihua, et al.
Publicado: (2018)