Cargando…
Multi-Focus Image Fusion Based on Convolution Neural Network for Parkinson’s Disease Image Classification
Parkinson’s disease (PD) is a common neurodegenerative disease that has a significant impact on people’s lives. Early diagnosis is imperative since proper treatment stops the disease’s progression. With the rapid development of CAD techniques, there have been numerous applications of computer-aided...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700359/ https://www.ncbi.nlm.nih.gov/pubmed/34943615 http://dx.doi.org/10.3390/diagnostics11122379 |
Sumario: | Parkinson’s disease (PD) is a common neurodegenerative disease that has a significant impact on people’s lives. Early diagnosis is imperative since proper treatment stops the disease’s progression. With the rapid development of CAD techniques, there have been numerous applications of computer-aided diagnostic (CAD) techniques in the diagnosis of PD. In recent years, image fusion has been applied in various fields and is valuable in medical diagnosis. This paper mainly adopts a multi-focus image fusion method primarily based on deep convolutional neural networks to fuse magnetic resonance images (MRI) and positron emission tomography (PET) neural photographs into multi-modal images. Additionally, the study selected Alexnet, Densenet, ResNeSt, and Efficientnet neural networks to classify the single-modal MRI dataset and the multi-modal dataset. The test accuracy rates of the single-modal MRI dataset are 83.31%, 87.76%, 86.37%, and 86.44% on the Alexnet, Densenet, ResNeSt, and Efficientnet, respectively. Moreover, the test accuracy rates of the multi-modal fusion dataset on the Alexnet, Densenet, ResNeSt, and Efficientnet are 90.52%, 97.19%, 94.15%, and 93.39%. As per all four networks discussed above, it can be concluded that the test results for the multi-modal dataset are better than those for the single-modal MRI dataset. The experimental results showed that the multi-focus image fusion method according to deep learning can enhance the accuracy of PD image classification. |
---|