Cargando…
The Added Effect of Artificial Intelligence on Physicians’ Performance in Detecting Thoracic Pathologies on CT and Chest X-ray: A Systematic Review
Our systematic review investigated the additional effect of artificial intelligence-based devices on human observers when diagnosing and/or detecting thoracic pathologies using different diagnostic imaging modalities, such as chest X-ray and CT. Peer-reviewed, original research articles from EMBASE,...
Autores principales: | Li, Dana, Pehrson, Lea Marie, Lauridsen, Carsten Ammitzbøl, Tøttrup, Lea, Fraccaro, Marco, Elliott, Desmond, Zając, Hubert Dariusz, Darkner, Sune, Carlsen, Jonathan Frederik, Nielsen, Michael Bachmann |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700414/ https://www.ncbi.nlm.nih.gov/pubmed/34943442 http://dx.doi.org/10.3390/diagnostics11122206 |
Ejemplares similares
-
Performance and Agreement When Annotating Chest X-ray Text Reports—A Preliminary Step in the Development of a Deep Learning-Based Prioritization and Detection System
por: Li, Dana, et al.
Publicado: (2023) -
Automatic Pulmonary Nodule Detection Applying Deep Learning or Machine Learning Algorithms to the LIDC-IDRI Database: A Systematic Review
por: Pehrson, Lea Marie, et al.
Publicado: (2019) -
Inter- and Intra-Observer Agreement When Using a Diagnostic Labeling Scheme for Annotating Findings on Chest X-rays—An Early Step in the Development of a Deep Learning-Based Decision Support System
por: Li, Dana, et al.
Publicado: (2022) -
The Performance of Deep Learning Algorithms on Automatic Pulmonary Nodule Detection and Classification Tested on Different Datasets That Are Not Derived from LIDC-IDRI: A Systematic Review
por: Li, Dana, et al.
Publicado: (2019) -
Reconstructing Binary Signals from Local Histograms
por: Sporring, Jon, et al.
Publicado: (2022)