Cargando…
Emerging Role of Extracellular Vesicles and Cellular Communication in Metastasis
Communication between cancer cells and the surrounding stromal cells of the tumor microenvironment (TME) plays a key role in promoting metastasis, which is the major cause of cancer death. Small membrane-bound particles called extracellular vesicles (EVs) are released from both cancer and stromal ce...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700460/ https://www.ncbi.nlm.nih.gov/pubmed/34943937 http://dx.doi.org/10.3390/cells10123429 |
Sumario: | Communication between cancer cells and the surrounding stromal cells of the tumor microenvironment (TME) plays a key role in promoting metastasis, which is the major cause of cancer death. Small membrane-bound particles called extracellular vesicles (EVs) are released from both cancer and stromal cells and have a key role in mediating this communication through transport of cargo such as various RNA species (mRNA, miRNA, lncRNA), proteins, and lipids. Tumor-secreted EVs have been observed to induce a pro-tumorigenic phenotype in non-malignant cells of the stroma, including fibroblasts, endothelial cells, and local immune cells. These cancer-associated cells then drive metastasis by mechanisms such as increasing the invasiveness of cancer cells, facilitating angiogenesis, and promoting the formation of the pre-metastatic niche. This review will cover the role of EV-mediated signaling in the TME during metastasis and highlight the therapeutic potential of targeting these pathways to develop biomarkers and novel treatment strategies. |
---|