Cargando…

Differences of Transport Activity of Arginine and Regulation on Neuronal Nitric Oxide Synthase and Oxidative Stress in Amyotrophic Lateral Sclerosis Model Cell Lines

L-Arginine, a semi-essential amino acid, was shown to delay dysfunction of motor neurons and to prolong the lifespan, upon analysis of transgenic mouse models of amyotrophic lateral sclerosis (ALS). We investigated the transport function of arginine and neuronal nitric oxide synthase (nNOS) expressi...

Descripción completa

Detalles Bibliográficos
Autores principales: Latif, Sana, Kang, Young-Sook
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700480/
https://www.ncbi.nlm.nih.gov/pubmed/34944061
http://dx.doi.org/10.3390/cells10123554
Descripción
Sumario:L-Arginine, a semi-essential amino acid, was shown to delay dysfunction of motor neurons and to prolong the lifespan, upon analysis of transgenic mouse models of amyotrophic lateral sclerosis (ALS). We investigated the transport function of arginine and neuronal nitric oxide synthase (nNOS) expression after pretreatment with L-arginine in NSC-34 hSOD1(WT) (wild-type, WT) and hSOD1(G93A) (mutant-type, MT) cell lines. [(3)H]L-Arginine uptake was concentration-dependent, voltage-sensitive, and sodium-independent in both cell lines. Among the cationic amino acid transporters family, including system y+, b(0,+), B(0,+), and y(+)L, system y(+) is mainly involved in [(3)H]L-arginine transport in ALS cell lines. System b(0,+) accounted for 23% of the transport in both cell lines. System B(0,+) was found only in MT, and whereas, system y(+)L was found only in WT. Lysine competitively inhibited [(3)H]L-arginine uptake in both cell lines. The nNOS mRNA expression was significantly lower in MT than in WT. Pretreatment with arginine elevated nNOS mRNA levels in MT. Oxidizing stressor, H(2)O(2), significantly decreased their uptake; however, pretreatment with arginine restored the transport activity in both cell lines. In conclusion, arginine transport is associated with system y(+), and neuroprotection by L-arginine may provide an edge as a possible therapeutic target in the treatment of ALS.