Cargando…
On Epistemics in Expected Free Energy for Linear Gaussian State Space Models
Active Inference (AIF) is a framework that can be used both to describe information processing in naturally intelligent systems, such as the human brain, and to design synthetic intelligent systems (agents). In this paper we show that Expected Free Energy (EFE) minimisation, a core feature of the fr...
Autores principales: | Koudahl, Magnus T., Kouw, Wouter M., de Vries, Bert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700494/ https://www.ncbi.nlm.nih.gov/pubmed/34945871 http://dx.doi.org/10.3390/e23121565 |
Ejemplares similares
-
Active Inference and Epistemic Value in Graphical Models
por: van de Laar, Thijs, et al.
Publicado: (2022) -
Message Passing-Based Inference for Time-Varying Autoregressive Models
por: Podusenko, Albert, et al.
Publicado: (2021) -
State-space models’ dirty little secrets: even simple linear Gaussian models can have estimation problems
por: Auger-Méthé, Marie, et al.
Publicado: (2016) -
Epistemic Health, Epistemic Immunity and Epistemic Inoculation
por: Piovarchy, Adam, et al.
Publicado: (2023) -
Efficient classical computation of expectation values in a class of quantum circuits with an epistemically restricted phase space representation
por: Budiyono, Agung, et al.
Publicado: (2020)