Cargando…
Hypothetical Control of Fatal Quarrel Variability
Wars, terrorist attacks, as well as natural catastrophes typically result in a large number of casualties, whose distributions have been shown to belong to the class of Pareto’s inverse power laws (IPLs). The number of deaths resulting from terrorist attacks are herein fit by a double Pareto probabi...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700512/ https://www.ncbi.nlm.nih.gov/pubmed/34945999 http://dx.doi.org/10.3390/e23121693 |
Sumario: | Wars, terrorist attacks, as well as natural catastrophes typically result in a large number of casualties, whose distributions have been shown to belong to the class of Pareto’s inverse power laws (IPLs). The number of deaths resulting from terrorist attacks are herein fit by a double Pareto probability density function (PDF). We use the fractional probability calculus to frame our arguments and to parameterize a hypothetical control process to temper a Lévy process through a collective-induced potential. Thus, the PDF is shown to be a consequence of the complexity of the underlying social network. The analytic steady-state solution to the fractional Fokker-Planck equation (FFPE) is fit to a forty-year fatal quarrel (FQ) dataset. |
---|