Cargando…
RF Signal-Based UAV Detection and Mode Classification: A Joint Feature Engineering Generator and Multi-Channel Deep Neural Network Approach
With the proliferation of Unmanned Aerial Vehicles (UAVs) to provide diverse critical services, such as surveillance, disaster management, and medicine delivery, the accurate detection of these small devices and the efficient classification of their flight modes are of paramount importance to guaran...
Autores principales: | Yang, Shubo, Luo, Yang, Miao, Wang, Ge, Changhao, Sun, Wenjian, Luo, Chunbo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700519/ https://www.ncbi.nlm.nih.gov/pubmed/34945985 http://dx.doi.org/10.3390/e23121678 |
Ejemplares similares
-
Deep Learning Approach to UAV Detection and Classification by Using Compressively Sensed RF Signal
por: Mo, Yongguang, et al.
Publicado: (2022) -
UAV Positioning Mechanisms in Landing Stations: Classification and Engineering Design Review
por: Galimov, Musa, et al.
Publicado: (2020) -
Radar-Spectrogram-Based UAV Classification Using Convolutional Neural Networks
por: Park, Dongsuk, et al.
Publicado: (2020) -
Joint Fusion and Detection via Deep Learning in UAV-Borne Multispectral Sensing of Scatterable Landmine †
por: Qiu, Zhongze, et al.
Publicado: (2023) -
Fast Automatic Registration of UAV Images via Bidirectional Matching
por: Luo, Xin, et al.
Publicado: (2023)