Cargando…
Aggregating Twitter Text through Generalized Linear Regression Models for Tweet Popularity Prediction and Automatic Topic Classification
Social media platforms have become accessible resources for health data analysis. However, the advanced computational techniques involved in big data text mining and analysis are challenging for public health data analysts to apply. This study proposes and explores the feasibility of a novel yet str...
Autores principales: | Mo, Chen, Yin, Jingjing, Fung, Isaac Chun-Hai, Tse, Zion Tsz Ho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700529/ https://www.ncbi.nlm.nih.gov/pubmed/34940387 http://dx.doi.org/10.3390/ejihpe11040109 |
Ejemplares similares
-
Tweet topics and sentiments relating to distance learning among Italian Twitter users
por: Stracqualursi, Luisa, et al.
Publicado: (2022) -
Research Advance: Linear Prediction Model of the number of Tweets sent by Twitter users
por: Suárez Gutiérrez, Manuel
Publicado: (2017) -
Twitter and Middle East respiratory syndrome, South Korea, 2015: A multi-lingual study
por: Fung, Isaac Chun-Hai, et al.
Publicado: (2018) -
To Tweet or Not to Tweet—a Review of the Viral Power of Twitter for Infectious Diseases
por: Kullar, Ravina, et al.
Publicado: (2020) -
#CDCGrandRounds and #VitalSigns: A Twitter Analysis
por: Jackson, Ashley M., et al.
Publicado: (2018)