Cargando…

Artificial Intelligence and OCT Angiography in Full Thickness Macular Hole. New Developments for Personalized Medicine

Purpose: To evaluate the 1-year visual acuity predictive performance of an artificial intelligence (AI) based model applied to optical coherence tomography angiography (OCT-A) vascular layers scans from eyes with a full-thickness macular hole (FTMH). Methods: In this observational cross-sectional, s...

Descripción completa

Detalles Bibliográficos
Autores principales: Rizzo, Stanislao, Savastano, Alfonso, Lenkowicz, Jacopo, Savastano, Maria Cristina, Boldrini, Luca, Bacherini, Daniela, Falsini, Benedetto, Valentini, Vincenzo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8700555/
https://www.ncbi.nlm.nih.gov/pubmed/34943557
http://dx.doi.org/10.3390/diagnostics11122319
Descripción
Sumario:Purpose: To evaluate the 1-year visual acuity predictive performance of an artificial intelligence (AI) based model applied to optical coherence tomography angiography (OCT-A) vascular layers scans from eyes with a full-thickness macular hole (FTMH). Methods: In this observational cross-sectional, single-center study, 35 eyes of 35 patients with FTMH were analyzed by OCT-A before and 1-year after surgery. Superficial vascular plexus (SVP) and deep vascular plexus (DVP) images were collected for the analysis. AI approach based on convolutional neural networks (CNN) was used to generate a continuous predictive variable based on both SVP and DPV. Different pre-trained CNN networks were used for feature extraction and compared for predictive accuracy. Results: Among the different tested models, the inception V3 network, applied on the combination of deep and superficial OCT-A images, showed the most significant differences between the two obtained image clusters defined in C1 and C2 (best-corrected visual acuity (BCVA) C1 = 66.67 (16.00 SD) and BCVA C2 = 49.10 (18.60 SD, p = 0.005)). Conclusions: The AI-based analysis of preoperative OCT-A images of eyes affected by FTMH may be a useful support system in setting up visual acuity recovery prediction. The combination of preoperative SVP and DVP images showed a significant morphological predictive performance for visual acuity recovery.